谷物灌浆期叶色改良水稻基因型的源汇关系量化

IF 4.6 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Zhenxiang Zhou, Paul C. Struik, Junfei Gu, Peter E.L. van der Putten, Zhiqin Wang, Jianchang Yang, Xinyou Yin
{"title":"谷物灌浆期叶色改良水稻基因型的源汇关系量化","authors":"Zhenxiang Zhou, Paul C. Struik, Junfei Gu, Peter E.L. van der Putten, Zhiqin Wang, Jianchang Yang, Xinyou Yin","doi":"10.1016/j.jia.2024.03.034","DOIUrl":null,"url":null,"abstract":"Leaf-colour modification can affect the canopy photosynthesis, with a potential effect on rice yield and yield components. Also, modulating source-sink relationships through crop management has been used to improve crop productivity. This study aims to investigate whether and how modifying leaf colour alters source-sink relationships and whether current crop cultivation practices remain applicable for leaf-colour modified genotypes. Periodically collected data of total biomass and nitrogen (N) accumulation in rice genotypes of four genetic backgrounds and their leaf-colour modified (greener or yellower) variants were analysed, using a recently established model method to quantify the source-sink (im)balance during grain filling. Among all leaf-colour variants, only one yellower-leaf variant showed higher source capacity than its normal genotype. This was associated with increased post-flowering N-uptake that prolonged functional leaf-N duration, and this increased post-flowering N-uptake was possible because of reduced pre-flowering N-uptake. The density experiment showed that current management practices (insufficient planting density accompanied with abundant N application) were unsuitable for the yellower-leaf genotype, ultimately limiting its yield potential. Leaf-colour modification affects source-sink relationships by regulating N trade-off between pre-flowering and post-flowering uptake, and N translocation between source and sink organs. To best exploit leaf-colour modification for an improved crop productivity, adjustments of crop management practices are required.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying source-sink relationships in leaf-colour modified rice genotypes during grain filling\",\"authors\":\"Zhenxiang Zhou, Paul C. Struik, Junfei Gu, Peter E.L. van der Putten, Zhiqin Wang, Jianchang Yang, Xinyou Yin\",\"doi\":\"10.1016/j.jia.2024.03.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leaf-colour modification can affect the canopy photosynthesis, with a potential effect on rice yield and yield components. Also, modulating source-sink relationships through crop management has been used to improve crop productivity. This study aims to investigate whether and how modifying leaf colour alters source-sink relationships and whether current crop cultivation practices remain applicable for leaf-colour modified genotypes. Periodically collected data of total biomass and nitrogen (N) accumulation in rice genotypes of four genetic backgrounds and their leaf-colour modified (greener or yellower) variants were analysed, using a recently established model method to quantify the source-sink (im)balance during grain filling. Among all leaf-colour variants, only one yellower-leaf variant showed higher source capacity than its normal genotype. This was associated with increased post-flowering N-uptake that prolonged functional leaf-N duration, and this increased post-flowering N-uptake was possible because of reduced pre-flowering N-uptake. The density experiment showed that current management practices (insufficient planting density accompanied with abundant N application) were unsuitable for the yellower-leaf genotype, ultimately limiting its yield potential. Leaf-colour modification affects source-sink relationships by regulating N trade-off between pre-flowering and post-flowering uptake, and N translocation between source and sink organs. To best exploit leaf-colour modification for an improved crop productivity, adjustments of crop management practices are required.\",\"PeriodicalId\":16305,\"journal\":{\"name\":\"Journal of Integrative Agriculture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jia.2024.03.034\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.jia.2024.03.034","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

叶色变化会影响冠层光合作用,从而对水稻产量和产量成分产生潜在影响。此外,通过作物管理调节源汇关系也被用来提高作物产量。本研究旨在探讨改变叶色是否以及如何改变源汇关系,以及目前的作物栽培方法是否仍然适用于叶色改变的基因型。利用最近建立的模型方法,对四种遗传背景的水稻基因型及其叶色修饰(更绿或更黄)变体的总生物量和氮(N)积累进行了定期收集的数据分析,以量化谷物灌浆期间的源-汇(不)平衡。在所有叶色变体中,只有一个叶色较黄的变体比其正常基因型表现出更高的源能力。这与花后氮吸收增加有关,延长了功能性叶-氮持续时间,花后氮吸收增加是因为花前氮吸收减少。密度实验表明,目前的管理方法(种植密度不足,同时施用大量氮)不适合黄叶基因型,最终限制了其产量潜力。叶色修饰通过调节花前和花后吸收氮的权衡,以及源器官和吸收器官之间的氮转移,影响源-汇关系。要充分利用叶色变化提高作物产量,就必须调整作物管理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying source-sink relationships in leaf-colour modified rice genotypes during grain filling
Leaf-colour modification can affect the canopy photosynthesis, with a potential effect on rice yield and yield components. Also, modulating source-sink relationships through crop management has been used to improve crop productivity. This study aims to investigate whether and how modifying leaf colour alters source-sink relationships and whether current crop cultivation practices remain applicable for leaf-colour modified genotypes. Periodically collected data of total biomass and nitrogen (N) accumulation in rice genotypes of four genetic backgrounds and their leaf-colour modified (greener or yellower) variants were analysed, using a recently established model method to quantify the source-sink (im)balance during grain filling. Among all leaf-colour variants, only one yellower-leaf variant showed higher source capacity than its normal genotype. This was associated with increased post-flowering N-uptake that prolonged functional leaf-N duration, and this increased post-flowering N-uptake was possible because of reduced pre-flowering N-uptake. The density experiment showed that current management practices (insufficient planting density accompanied with abundant N application) were unsuitable for the yellower-leaf genotype, ultimately limiting its yield potential. Leaf-colour modification affects source-sink relationships by regulating N trade-off between pre-flowering and post-flowering uptake, and N translocation between source and sink organs. To best exploit leaf-colour modification for an improved crop productivity, adjustments of crop management practices are required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrative Agriculture
Journal of Integrative Agriculture AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
4.20%
发文量
4817
审稿时长
3-6 weeks
期刊介绍: Journal of Integrative Agriculture publishes manuscripts in the categories of Commentary, Review, Research Article, Letter and Short Communication, focusing on the core subjects: Crop Genetics & Breeding, Germplasm Resources, Physiology, Biochemistry, Cultivation, Tillage, Plant Protection, Animal Science, Veterinary Science, Soil and Fertilization, Irrigation, Plant Nutrition, Agro-Environment & Ecology, Bio-material and Bio-energy, Food Science, Agricultural Economics and Management, Agricultural Information Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信