Dito Anurogo, Chia-Yuan Chen, Chu-Chi Lin, Jeanne Adiwinata Pawitan, Daniel W Qiu, J Timothy Qiu
{"title":"Codon optimized influenza H1 HA sequence but not CTLA-4 targeting of HA antigen to enhance the efficacy of DNA vaccines in an animal model.","authors":"Dito Anurogo, Chia-Yuan Chen, Chu-Chi Lin, Jeanne Adiwinata Pawitan, Daniel W Qiu, J Timothy Qiu","doi":"10.1080/1547691X.2024.2400624","DOIUrl":"https://doi.org/10.1080/1547691X.2024.2400624","url":null,"abstract":"<p><p>Infections caused by the influenza virus lead to both epidemic and pandemic outbreaks in humans and animals. Owing to their rapid production, safety, and stability, DNA vaccines represent a promising avenue for eliciting immunity and thwarting viral infections. While DNA vaccines have demonstrated substantial efficacy in murine models, their effectiveness in larger animals remains subdued. This limitation may be addressed by augmenting the immunogenicity of DNA-based vaccines. In the investigation here, protein expression was enhanced <i>via</i> codon optimization and then mouse cytotoxic T-lymphocyte antigen 4 (CTLA-4) was harnessed as a modulatory adjunct to bind directly to antigen-presenting cells. Further, the study evaluated the immunogenicity of two variants of the hemagglutinin (HA) antigen, i.e. the full-length and the C-terminal deletion versions. The study findings revealed that the codon-optimized HA gene (pcHA) led to increased protein synthesis, as evidenced by elevated mRNA levels. Codon optimization also significantly bolstered both cellular and humoral immune responses. In cytokine assays, all plasmid constructs, particularly pCTLA4-cHA, induced robust interferon (IFN)-γ production, while interleukin (IL)-4 levels remained uniformly non-significant. Mice immunized with pcHA displayed an augmented presence of IFNγ<sup>+</sup> T-cells, underscoring the enhanced potency of the codon-optimized HA vaccine. Contrarily, CTLA-4-fused DNA vaccines did not significantly amplify the immune response.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 1","pages":"2400624"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Drake W Phelps, Ashley M Connors, Giuliano Ferrero, Jamie C DeWitt, Jeffrey A Yoder
{"title":"Per- and polyfluoroalkyl substances alter innate immune function: evidence and data gaps.","authors":"Drake W Phelps, Ashley M Connors, Giuliano Ferrero, Jamie C DeWitt, Jeffrey A Yoder","doi":"10.1080/1547691X.2024.2343362","DOIUrl":"10.1080/1547691X.2024.2343362","url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFASs) are a large class of compounds used in a variety of processes and consumer products. Their unique chemical properties make them ubiquitous and persistent environmental contaminants while also making them economically viable and socially convenient. To date, several reviews have been published to synthesize information regarding the immunotoxic effects of PFASs on the adaptive immune system. However, these reviews often do not include data on the impact of these compounds on innate immunity. Here, current literature is reviewed to identify and incorporate data regarding the effects of PFASs on innate immunity in humans, experimental models, and wildlife. Known mechanisms by which PFASs modulate innate immune function are also reviewed, including disruption of cell signaling, metabolism, and tissue-level effects. For PFASs where innate immune data are available, results are equivocal, raising additional questions about common mechanisms or pathways of toxicity, but highlighting that the innate immune system within several species can be perturbed by exposure to PFASs. Recommendations are provided for future research to inform hazard identification, risk assessment, and risk management practices for PFASs to protect the immune systems of exposed organisms as well as environmental health.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 1","pages":"2343362"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Type 2 responses determine skin rash during recombinant interleukin-2 therapy.","authors":"Charline Sommer, Vanessa Neuhaus, Patricia Gogesch, Thierry Flandre, Susann Dehmel, Katherina Sewald","doi":"10.1080/1547691X.2024.2343359","DOIUrl":"10.1080/1547691X.2024.2343359","url":null,"abstract":"<p><p>The skin is the organ most often affected by adverse drug reactions. Although these cutaneous adverse drug reactions (CADRs) often are mild, they represent a major burden for patients. One of the drugs inducing CADRs is aldesleukin, a recombinant interleukin-2 (recIL-2) originally approved to treat malignant melanoma and metastatic renal cell carcinoma which frequently led to skin rashes when applied in high doses for anti-cancer therapy. Skin rashes and other side effects, together with poor efficacy led to a drawback of the therapeutic, but modified recIL-2 molecules are on the rise to treat both cancer and inflammatory diseases such as autoimmunity. Still, pathophysiological mechanisms of recIL-2-induced skin rashes are not understood. In the study reported here, a hypothetical literature-based immune-related adverse outcome pathway (irAOP) was developed to identify possible key cells and molecules in recIL-2-induced skin rash. Using this approach, a hypothesis was formed that the induced immune response predominantly is Type 2-driven by T-helper and innate lymphoid cells, leading to the occurrence of cutaneous side effects during recIL-2 therapy. This paper further discusses mechanisms beyond the proposed irAOP which might add to the pathology but currently are less-studied. Together, this hypothetic irAOP forms a basis to clarify possible cellular and molecular interactions leading to recIL-2-induced skin rash. This might be used to adapt existing or develop new test systems to help predict and prevent cutaneous side effects in future IL-2-based or similar therapies.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 sup1","pages":"S48-S59"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Mazein, Muhammad Shoaib, Miriam Alb, Christina Sakellariou, Charline Sommer, Katherina Sewald, Kristin Reiche, Patricia Gogesch, Luise A Roser, Samira Ortega Iannazzo, Sapna Sheth, Susanne Schiffmann, Zoe Waibler, Vanessa Neuhaus, Susann Dehmel, Venkata Satagopam, Reinhard Schneider, Marek Ostaszewski, Wei Gu
{"title":"Using interactive platforms to encode, manage and explore immune-related adverse outcome pathways.","authors":"Alexander Mazein, Muhammad Shoaib, Miriam Alb, Christina Sakellariou, Charline Sommer, Katherina Sewald, Kristin Reiche, Patricia Gogesch, Luise A Roser, Samira Ortega Iannazzo, Sapna Sheth, Susanne Schiffmann, Zoe Waibler, Vanessa Neuhaus, Susann Dehmel, Venkata Satagopam, Reinhard Schneider, Marek Ostaszewski, Wei Gu","doi":"10.1080/1547691X.2024.2345154","DOIUrl":"https://doi.org/10.1080/1547691X.2024.2345154","url":null,"abstract":"<p><p>This work focuses on the need for modeling and predicting adverse outcomes in immunotoxicology to improve nonclinical assessments of the safety of immunomodulatory therapies. The integrated approach includes, first, the adverse outcome pathway concept established in the toxicology field, and, second, the systems medicine disease map approach for describing molecular mechanisms involved in a particular pathology. The proposed systems immunotoxicology workflow is illustrated with chimeric antigen receptor (CAR) T cell treatment as a use case. To this end, the linear adverse outcome pathway (AOP) is expanded into a molecular interaction model in standard systems biology formats. Then it is shown how knowledge related to immunotoxic events can be integrated, encoded, managed, and explored to benefit the research community. The map is accessible online at https://imsavar.elixir-luxembourg.org <i>via</i> the MINERVA Platform for browsing, commenting, and data visualization. Our work transforms a graphical illustration of an AOP into a digitally structured and standardized form, featuring precise and controlled vocabulary and supporting reproducible computational analyses. Because of annotations to source literature and databases, the map can be further expanded to match the evolving knowledge and research questions.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 sup1","pages":"S5-S12"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using irAOP for non-clinical safety evaluation of biotechnology-derived pharmaceuticals and ATMPs: a paradigm shift into a systematic and holistic framework.","authors":"Armin Braun, Susann Dehmel","doi":"10.1080/1547691X.2024.2390920","DOIUrl":"10.1080/1547691X.2024.2390920","url":null,"abstract":"<p><p>The chances and opportunities in modern biology inspired devising new therapeutics are mind blowing. The promises reach from successfully treating so-far incurable diseases like cancer and certain infections, to modulating and fine tuning the immune response to prolong the lifespan by inhibiting aging. However, as underlying therapies become more and more complex and sophisticated, it becomes increasingly difficult to find ways to ensure and predict the safety of these new therapeutics. The ICH guideline S6 (R1) from June 2011 EMA/CHMP/ICH/731268/ 1998 Committee for Medicinal Products for Human Use (CHMP) already stated \"Conventional approaches to toxicity testing of pharmaceuticals may not be appropriate for biopharmaceuticals due to the unique and diverse structural and biological properties of the latter that may include species specificity, immunogenicity, and unpredicted pleiotropic activities\" and is committed to a \"flexible, case-by-case, science-based approach to preclinical safety evaluation\". Initial approaches to this are described in the OECD Test Guidelines for new approach methods (NAM) with the newest update released in 2023 and alternative non-animal test guidelines (https://www.icapo.org/test-guidelines) provided from the International Council on Animal Protection in OECD Programmes (ICAPO; https://www.icapo.org). Beyond that, the European Union-funded innovative medicine initiative project Immune Safety Avatar (imSAVAR) decided to develop a systematic and holistic framework for non-clinical safety assessment of biopharmaceuticals and Advanced Therapy Medicinal Products (ATMP); thereby, the consortium focuses on immuno-regulatory therapeutics. Science-based approaches, such as the mechanistic description of adverse outcomes would be essential to demonstrate the safety of a particular new immuno-therapeutic agent. Here, we re-use the concept of adverse outcome pathways (AOP) to capture immune-related adverse outcomes (irAO), which are aimed to guide us to the use of relevant test systems and experiments. Thus, the focus within imSAVAR is on the use and (further) develop-ment of human and alternative models.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 sup1","pages":"S96-S98"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An overview of immune safety avatar: mimicking the effects of immunomodulatory therapies on the immune system.","authors":"Vanessa Neuhaus, Laure-Alix Clerbaux, Katherina Sewald","doi":"10.1080/1547691X.2024.2354213","DOIUrl":"https://doi.org/10.1080/1547691X.2024.2354213","url":null,"abstract":"<p><p>Innovative therapeutics like biologicals that modulate the immune system are on the rise. However, their immune-modulating characteristics can also lead sometimes to the induction of adverse effects, by triggering unintended immune reactions. Due to the complexity and target-specificity of such therapeutics, these drug-induced adverse events could remain undetected during non-clinical development, if the test systems are, for example, animal-based, and only emerge in clinical development when tested in humans and subsequently lead to discontinuance of otherwise promising drug candidates. To identify adverse effects on the human immune system at an early stage, new approaches, assays, and technologies are needed. The Innovative Medicine Initiative (IMI) cooperation Immune Safety Avatar (imSAVAR) project aims to develop a tool for integrated non-clinical safety assessment for immune-modulatory new therapeutic drugs and clinical trial applications. To achieve this goal, imSAVAR has relied on the Adverse Outcome Pathway (AOP) framework to gather knowledge in a structured approach and to design, select or develop, when needed, appropriate test systems for prediction of the immune-related adverse outcomes. So far, the imSAVAR consortium has identified the \"mode of action\" for certain classes of drugs that needed improved risk assessment, including chimeric antigen receptor T cells (CAR T cells), immune checkpoint inhibitors (ICIs), and recombinant proteins (e.g. interleukin [IL]-2), has linked those to their immune-related adverse outcomes and has formulated literature-based immune-related AOPs (irAOPs). Models to measure those immune-specific perturbations were selected, adjusted, or newly developed. The imSAVAR work described in this special issue of <i>The Journal of Immunotoxicology</i> supports our understanding of immune-mediated adverse effects and their early discovery during development to improve the safety of innovative biomedicals.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 sup1","pages":"S1-S4"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analyzing IL-2-induced vascular leakage with an irAOP as tool.","authors":"Patricia Gogesch, Samira Ortega Iannazzo, Tamara Zimmermann, Remi Villenave, Katherina Sewald, Zoe Waibler","doi":"10.1080/1547691X.2024.2369123","DOIUrl":"https://doi.org/10.1080/1547691X.2024.2369123","url":null,"abstract":"<p><p>Immune-related adverse outcome pathways (irAOPs) are a toxicological tool for the structuring of complex immunological mechanisms. The EU-funded IMI-project imSAVAR analyses the applicability of irAOPs in pre-clinical safety assessment of immunotherapies. Here, we use immunotherapy with interleukin (IL)-2 as a use case to develop an irAOP for IL-2-mediated vascular leakage (VL). Despite severe side effects observed upon high-dose treatment, IL-2 remains a promising candidate for cancer- and autoimmune therapy. The secondary systemic capillary leakage syndrome is described by a high mortality and a lethality rate of 20 - 30%. However, due to its non-specific symptoms, it remains a serious but under-diagnosed pathology. VL as general phenomenon is associated with several pro-inflammatory scenarios or observed as severe side effect of immunotherapies. In such situations, the physiological condition, in which endothelial cells (ECs) form the semipermeable seal of the vasculature, can escalate into pathological vascular permeability and finally VL. Although EC-biology and mechanisms underlying VL are ongoing subjects of research since many years, exact understanding of VL pathophysiology remains unclear. With this review, we provide an overview of the development of VL from an immunological perspective in the context of high-dose IL-2 immunotherapy. We structured the corresponding knowledge and generated an irAOP for IL-2-mediated VL with the aim to identify gaps and possible biomarkers. Gained insights from this theoretical approach facilitate the identification of relevant scientific questions as a basis for concrete experimental work. Integration of novel experiment-based knowledge into the existing irAOP could close a 'feedback-loop' by enabling irAOP-refinement and the identification of new questions. At the same time this could give rise to important information to improve test systems for IL-2-based immunotherapy safety-assessment and overall the approach to understand, prevent, or predict VL as critical side effect of other clinical conditions.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 sup1","pages":"S79-S88"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luise A Roser, Charline Sommer, Samira Ortega Iannazzo, Christina Sakellariou, Zoe Waibler, Patricia Gogesch
{"title":"Revival of recombinant IL-2 therapy - approaches from the past until today.","authors":"Luise A Roser, Charline Sommer, Samira Ortega Iannazzo, Christina Sakellariou, Zoe Waibler, Patricia Gogesch","doi":"10.1080/1547691X.2024.2335219","DOIUrl":"10.1080/1547691X.2024.2335219","url":null,"abstract":"<p><p>Interleukin-2 (IL-2) was one of the first cytokines discovered and its central role in T cell function soon led to the notion that the cytokine could specifically activate immune cells to combat cancer cells. Recombinant human IL-2 (recIL-2) belonged to the first anti-cancer immunotherapeutics that received marketing authorization and while it mediated anti-tumor effects in some cancer entities, treatment was associated with severe and systemic side effects. RecIL-2 holds an exceptional therapeutic potential, which can either lead to stimulation of the immune system - favorable during cancer treatment - or immunosuppression - used for treatment of inflammatory diseases such as autoimmunity. Due to these pleiotropic immune effects, recIL-2 therapy is still a hot topic in research and modified recIL-2 drug candidates show ameliorated efficacy and safety in pre-clinical and clinical studies. The Immune Safety Avatar (imSAVAR) consortium aims to systemically assess mechanisms leading to adverse events provoked by recIL-2 immunotherapy as a use case in order to aid safety evaluation of future recIL-2-based therapies. Here, we summarize the historical use of recIL-2 therapy, associated side effects, and describe the molecular basis of the dual role of IL-2. Finally, an overview of new recIL-2 compounds and delivery systems, which are currently being developed, will be given, highlighting a possible comeback of recIL-2 therapy.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 sup1","pages":"S38-S47"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miriam Alb, Kristin Reiche, Michael Rade, Katherina Sewald, Peter Loskill, Madalena Cipriano, Tengku Ibrahim Maulana, Andries D van der Meer, Huub J Weener, Laure-Alix Clerbaux, Birgit Fogal, Nirav Patel, Karissa Adkins, Emma Lund, Ethan Perkins, Christopher Cooper, Jan van den Brulle, Hannah Morgan, Tina Rubic-Schneider, Hui Ling, Keith DiPetrillo, Jonathan Moggs, Ulrike Köhl, Michael Hudecek
{"title":"Novel strategies to assess cytokine release mediated by chimeric antigen receptor T cells based on the adverse outcome pathway concept.","authors":"Miriam Alb, Kristin Reiche, Michael Rade, Katherina Sewald, Peter Loskill, Madalena Cipriano, Tengku Ibrahim Maulana, Andries D van der Meer, Huub J Weener, Laure-Alix Clerbaux, Birgit Fogal, Nirav Patel, Karissa Adkins, Emma Lund, Ethan Perkins, Christopher Cooper, Jan van den Brulle, Hannah Morgan, Tina Rubic-Schneider, Hui Ling, Keith DiPetrillo, Jonathan Moggs, Ulrike Köhl, Michael Hudecek","doi":"10.1080/1547691X.2024.2345158","DOIUrl":"10.1080/1547691X.2024.2345158","url":null,"abstract":"<p><p>The success of cellular immunotherapies such as chimeric antigen receptor (CAR) T cell therapy has led to their implementation as a revolutionary treatment option for cancer patients. However, the safe translation of such novel immunotherapies, from non-clinical assessment to first-in-human studies is still hampered by the lack of suitable <i>in vitro</i> and <i>in vivo</i> models recapitulating the complexity of the human immune system. Additionally, using cells derived from human healthy volunteers in such test systems may not adequately reflect the altered state of the patient's immune system thus potentially underestimating the risk of life-threatening conditions, such as cytokine release syndrome (CRS) following CAR T cell therapy. The IMI2/EU project imSAVAR (immune safety avatar: non-clinical mimicking of the immune system effects of immunomodulatory therapies) aims at creating a platform for novel tools and models for enhanced non-clinical prediction of possible adverse events associated with immunomodulatory therapies. This platform shall in the future guide early non-clinical safety assessment of novel immune therapeutics thereby also reducing the costs of their development. Therefore, we review current opportunities and challenges associated with non-clinical <i>in vitro</i> and <i>in vivo</i> models for the safety assessment of CAR T cell therapy ranging from organ-on-chip models up to advanced biomarker screening.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 sup1","pages":"S13-S28"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thuvan Dinh-Le, John Escobar, Louis Poisson, Karissa Adkins, Maria Jornet Culubret, Lukas Scheller, Jan van den Brulle, Michael Hudecek, Donald R Drake Iii, Miriam Alb, Ernesto Luna
{"title":"Identifying CD19-targeted CAR-T cell immune pathways in an in vitro human immune mimetic cytokine release assay.","authors":"Thuvan Dinh-Le, John Escobar, Louis Poisson, Karissa Adkins, Maria Jornet Culubret, Lukas Scheller, Jan van den Brulle, Michael Hudecek, Donald R Drake Iii, Miriam Alb, Ernesto Luna","doi":"10.1080/1547691X.2024.2378729","DOIUrl":"https://doi.org/10.1080/1547691X.2024.2378729","url":null,"abstract":"<p><p>CD19-targeted chimeric antigen receptor-modified T (CAR-T) cells have shown success in clinical studies, with several CD19 CAR-T cell products now having been approved for market use. However, this cell therapy can be associated with side effects such as cytokine release syndrome (CRS). Therefore, pre-clinical test systems are highly desired to permit the evaluation of these unwanted effects before clinical trials begin. In this study, we evaluated cytokine secretion and cell phenotype changes induced by human CD4<sup>+</sup> and CD8<sup>+</sup> CD19-targeted CAR-T cells in the cytokine release assay (CRA) module of a pre-clinical human <i>in vitro</i> 3D co-culture platform. The <i>in vitro</i> CRA data showed that CD19-targeted CAR-T cells induced a diverse and concentration-dependent cytokine response led by a T<sub>H</sub>1-profile (IFNγ, IL-2) and pro-inflammatory cytokines (IL-6, TNFα, MCP-1, IL-8, MIP-1b). It was also shown that different cellular components in this 3D co-culture system contributed to the CAR-T cell cytokine response. In particular, whole blood-derived cell populations were necessary to drive the production of T cell cytokines, and endothelial cells were required to generate pro-inflammatory cytokines. CD19-targeted CAR-T cells also triggered cell phenotype changes, including the activation of whole blood-derived CD4<sup>+</sup> and CD8<sup>+</sup> T-cells and activation/maturation of antigen-presenting cells, during treatment of the <i>in vitro</i> CRA platform. Additionally, the observation of a CD19-targeted CAR-T cell concentration-dependent reduction in the B-cell compartment in this study is aligned with the expected pharmacology and clinical profile of this compound. Overall, this dataset shows the utility of an <i>in vitro</i> CRA model as a pre-clinical platform for evaluating cytokine release potential and analysis of mechanisms of action of CD19-targeted CAR-T cells.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 sup1","pages":"S29-S37"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}