Journal of Immunotoxicology最新文献

筛选
英文 中文
Anti-microbial cetylpyridinium chloride suppresses mast cell function by targeting tyrosine phosphorylation of Syk kinase. 抗菌十六烷基吡啶氯通过靶向Syk激酶酪氨酸磷酸化抑制肥大细胞功能。
IF 2.4 4区 医学
Journal of Immunotoxicology Pub Date : 2024-12-01 Epub Date: 2025-01-15 DOI: 10.1080/1547691X.2024.2443397
Bright Obeng, Lucas J Bennett, Bailey E West, Dylan J Wagner, Patrick J Fleming, Morgan N Tasker, Madeleine K Lorenger, Dorothy R Smith, Tetiana Systuk, Sydni M Plummer, Jeongwon Eom, Marissa D Paine, Collin T Frangos, Michael P Wilczek, Juyoung K Shim, Melissa S Maginnis, Julie A Gosse
{"title":"Anti-microbial cetylpyridinium chloride suppresses mast cell function by targeting tyrosine phosphorylation of Syk kinase.","authors":"Bright Obeng, Lucas J Bennett, Bailey E West, Dylan J Wagner, Patrick J Fleming, Morgan N Tasker, Madeleine K Lorenger, Dorothy R Smith, Tetiana Systuk, Sydni M Plummer, Jeongwon Eom, Marissa D Paine, Collin T Frangos, Michael P Wilczek, Juyoung K Shim, Melissa S Maginnis, Julie A Gosse","doi":"10.1080/1547691X.2024.2443397","DOIUrl":"10.1080/1547691X.2024.2443397","url":null,"abstract":"<p><p>Cetylpyridinium chloride (CPC) is a quaternary ammonium antimicrobial used in numerous personal care products, human food, cosmetic products, and cleaning solutions. Yet, there is minimal published data on CPC effects on eukaryotes, immune signaling, and human health. Previously, it was shown that low-micromolar CPC inhibits rat mast cell function by inhibiting antigen (Ag)-stimulated Ca<sup>2+</sup> mobilization, microtubule polymerization, and degranulation. In the current study, these findings are extended to human mast cells (LAD2); this paper presents data indicating that a mechanism of action for CPC might center on its positively-charged quaternary nitrogen in its pyridinium headgroup. The inhibitory effect of CPC was independent of signaling platform receptor architecture. Tyrosine phosphorylation events are a trigger of Ca<sup>2+</sup> mobilization necessary for degranulation. CPC inhibits global tyrosine phosphorylation in Ag-stimulated mast cells. Specifically, CPC inhibits tyrosine phosphorylation of specific key players Syk kinase and LAT, a substrate of Syk. In contrast, CPC did not affect Lyn kinase phosphorylation. Thus, a root mechanism for CPC effect might be electrostatic disruption of particular tyrosine phosphorylation events essential for signaling. This work presented here outlines biochemical mechanisms underlying the effects of CPC on immune signaling.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 1","pages":"2443397"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143006621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunogenic properties of nickel-doped maghemite nanoparticles and the implication for cancer immunotherapy. 掺镍磁铁矿纳米粒子的免疫原性及其对癌症免疫疗法的影响。
IF 2.4 4区 医学
Journal of Immunotoxicology Pub Date : 2024-12-01 Epub Date: 2024-11-01 DOI: 10.1080/1547691X.2024.2416988
Lenka Rajsiglova, Michal Babic, Katerina Krausova, Pavol Lukac, Katerina Kalkusova, Pavla Taborska, Ludek Sojka, Jirina Bartunkova, Dmitry Stakheev, Luca Vannucci, Daniel Smrz
{"title":"Immunogenic properties of nickel-doped maghemite nanoparticles and the implication for cancer immunotherapy.","authors":"Lenka Rajsiglova, Michal Babic, Katerina Krausova, Pavol Lukac, Katerina Kalkusova, Pavla Taborska, Ludek Sojka, Jirina Bartunkova, Dmitry Stakheev, Luca Vannucci, Daniel Smrz","doi":"10.1080/1547691X.2024.2416988","DOIUrl":"https://doi.org/10.1080/1547691X.2024.2416988","url":null,"abstract":"<p><p>Nanoparticles are commonly used in diagnostics and therapy. They are also increasingly being implemented in cancer immunotherapy because of their ability to deliver drugs and modulate the immune system. However, the effect of nanoparticles on immune cells involved in the anti-tumor immune response is not well understood. The study reported here showed that nickel-doped maghemite nanoparticles (FN NP) are differentially cytotoxic to cultured mouse and human cancer cell lines, causing their death without negatively impacting the subsequent anticancer immune response. It also found that FN NP induced cell death in the mouse colorectal cancer cell line CT26 and human prostate cancer cell line PC-3, but not in the human prostate cancer cell line LNCaP. The induced cancer cell death did not affect the phenotype and responsivity of the isolated mouse peritoneal macrophages, or <i>ex vivo</i>-generated mouse bone marrow-derived, or human monocyte-derived dendritic cells. Additionally, the induced cancer cell death did not prevent the <i>ex vivo</i>-generated mouse or human dendritic cells from stimulating lymphocytes and enriching cell cultures with cancer cell-reactive T-cells. In conclusion, this study shows that FN NP could be a valuable platform for targeting cancer cells without causing immunosuppressive effects on the subsequent anticancer immune response.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 1","pages":"2416988"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Binary and quaternary mixtures of perfluoroalkyl substances (PFAS) differentially affect the immune response to influenza A virus infection. 全氟烷基物质(PFAS)的二元和四元混合物会对甲型流感病毒感染的免疫反应产生不同影响。
IF 2.4 4区 医学
Journal of Immunotoxicology Pub Date : 2024-12-01 Epub Date: 2024-07-01 DOI: 10.1080/1547691X.2024.2340495
Christina M Post, Carrie McDonough, B Paige Lawrence
{"title":"Binary and quaternary mixtures of perfluoroalkyl substances (PFAS) differentially affect the immune response to influenza A virus infection.","authors":"Christina M Post, Carrie McDonough, B Paige Lawrence","doi":"10.1080/1547691X.2024.2340495","DOIUrl":"10.1080/1547691X.2024.2340495","url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) are anthropogenic organofluorine compounds that persist indefinitely in the environment and bioaccumulate throughout all trophic levels. Biomonitoring efforts have detected multiple PFAS in the serum of most people. Immune suppression has been among the most consistent effects of exposure to PFAS. PFAS often co-occur as mixtures in the environment, however, few studies have examined immunosuppression of PFAS mixtures or determined whether PFAS exposure affects immune function in the context of infection. In this study, mixtures containing two or four different PFAS and a mouse model of infection with influenza A virus (IAV) were used to assess immunotoxicity of PFAS mixtures. PFAS were administered <i>via</i> the drinking water as either a binary mixture of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) or quaternary mixture of PFOS, PFOA, perfluorohexane sulfonate (PFHxS), and perfluorononanoic acid (PFNA). The results indicated that the binary mixture affected the T-cell response, while the quaternary mixture affected the B-cell response to infection. These findings indicate that the immunomodulatory effects of PFAS mixtures are not simply additive, and that the sensitivity of immune responses to PFAS varies by cell type and mixture. The study also demonstrates the importance of studying adverse health effects of PFAS mixtures.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 1","pages":"2340495"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219007/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systemic and immunotoxicity induced by topical application of perfluoroheptane sulfonic acid (PFHpS) or perfluorooctane sulfonic acid (PFOS) in a murine model. 在小鼠模型中局部应用全氟庚烷磺酸(PFHpS)或全氟辛烷磺酸(PFOS)引起的全身和免疫毒性。
IF 2.4 4区 医学
Journal of Immunotoxicology Pub Date : 2024-12-01 Epub Date: 2024-07-27 DOI: 10.1080/1547691X.2024.2371868
Lisa M Weatherly, Hillary L Shane, Laurel G Jackson, Ewa Lukomska, Rachel Baur, Madison P Cooper, Stacey E Anderson
{"title":"Systemic and immunotoxicity induced by topical application of perfluoroheptane sulfonic acid (PFHpS) or perfluorooctane sulfonic acid (PFOS) in a murine model.","authors":"Lisa M Weatherly, Hillary L Shane, Laurel G Jackson, Ewa Lukomska, Rachel Baur, Madison P Cooper, Stacey E Anderson","doi":"10.1080/1547691X.2024.2371868","DOIUrl":"10.1080/1547691X.2024.2371868","url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic surfactants of over 12,000 compounds that are incorporated into numerous products for their chemical and physical properties. Studies have associated PFAS with adverse health effects. Although there is a high potential for dermal exposure, these studies are lacking. The present study evaluated the systemic and immunotoxicity of subchronic 28- or 10-days of dermal exposure, respectively, to PFHpS (0.3125-2.5% or 7.82-62.5 mg/kg/dose) or PFOS (0.5% or 12.5 mg/kg/dose) in a murine model. Elevated levels of PFHpS were detected in the serum and urine, suggesting that absorption is occurring through the dermal route. PFHpS induced significantly increased relative liver weight, significantly decreased relative spleen and thymus weight, altered serum chemistries, and altered histopathology. Additionally, PFHpS significantly reduced the humoral immune response and altered immune subsets in the spleen, suggesting immunosuppression. Gene expression changes were observed in the liver, skin, and spleen of genes involved in fatty acid metabolism, necrosis, and inflammation. Immune-cell phenotyping identified significant decreases in B-cells and CD11b<sup>+</sup> monocyte and/or macrophages in the spleen along with decreases in eosinophils and dendritic cells in the skin. These findings support PFHpS absorption through the skin leading to liver damage and immune suppression.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 1","pages":"2371868"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590111/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Codon optimized influenza H1 HA sequence but not CTLA-4 targeting of HA antigen to enhance the efficacy of DNA vaccines in an animal model. 对 H1 流感 HA 序列进行密码子优化,但不对 HA 抗原的 CTLA-4 靶向进行优化,以提高 DNA 疫苗在动物模型中的疗效。
IF 2.4 4区 医学
Journal of Immunotoxicology Pub Date : 2024-12-01 Epub Date: 2024-09-25 DOI: 10.1080/1547691X.2024.2400624
Dito Anurogo, Chia-Yuan Chen, Chu-Chi Lin, Jeanne Adiwinata Pawitan, Daniel W Qiu, J Timothy Qiu
{"title":"Codon optimized influenza H1 HA sequence but not CTLA-4 targeting of HA antigen to enhance the efficacy of DNA vaccines in an animal model.","authors":"Dito Anurogo, Chia-Yuan Chen, Chu-Chi Lin, Jeanne Adiwinata Pawitan, Daniel W Qiu, J Timothy Qiu","doi":"10.1080/1547691X.2024.2400624","DOIUrl":"https://doi.org/10.1080/1547691X.2024.2400624","url":null,"abstract":"<p><p>Infections caused by the influenza virus lead to both epidemic and pandemic outbreaks in humans and animals. Owing to their rapid production, safety, and stability, DNA vaccines represent a promising avenue for eliciting immunity and thwarting viral infections. While DNA vaccines have demonstrated substantial efficacy in murine models, their effectiveness in larger animals remains subdued. This limitation may be addressed by augmenting the immunogenicity of DNA-based vaccines. In the investigation here, protein expression was enhanced <i>via</i> codon optimization and then mouse cytotoxic T-lymphocyte antigen 4 (CTLA-4) was harnessed as a modulatory adjunct to bind directly to antigen-presenting cells. Further, the study evaluated the immunogenicity of two variants of the hemagglutinin (HA) antigen, i.e. the full-length and the C-terminal deletion versions. The study findings revealed that the codon-optimized HA gene (pcHA) led to increased protein synthesis, as evidenced by elevated mRNA levels. Codon optimization also significantly bolstered both cellular and humoral immune responses. In cytokine assays, all plasmid constructs, particularly pCTLA4-cHA, induced robust interferon (IFN)-γ production, while interleukin (IL)-4 levels remained uniformly non-significant. Mice immunized with pcHA displayed an augmented presence of IFNγ<sup>+</sup> T-cells, underscoring the enhanced potency of the codon-optimized HA vaccine. Contrarily, CTLA-4-fused DNA vaccines did not significantly amplify the immune response.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 1","pages":"2400624"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Per- and polyfluoroalkyl substances alter innate immune function: evidence and data gaps. 全氟和多氟烷基物质改变先天性免疫功能:证据和数据差距。
IF 2.4 4区 医学
Journal of Immunotoxicology Pub Date : 2024-12-01 Epub Date: 2024-05-07 DOI: 10.1080/1547691X.2024.2343362
Drake W Phelps, Ashley M Connors, Giuliano Ferrero, Jamie C DeWitt, Jeffrey A Yoder
{"title":"Per- and polyfluoroalkyl substances alter innate immune function: evidence and data gaps.","authors":"Drake W Phelps, Ashley M Connors, Giuliano Ferrero, Jamie C DeWitt, Jeffrey A Yoder","doi":"10.1080/1547691X.2024.2343362","DOIUrl":"10.1080/1547691X.2024.2343362","url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFASs) are a large class of compounds used in a variety of processes and consumer products. Their unique chemical properties make them ubiquitous and persistent environmental contaminants while also making them economically viable and socially convenient. To date, several reviews have been published to synthesize information regarding the immunotoxic effects of PFASs on the adaptive immune system. However, these reviews often do not include data on the impact of these compounds on innate immunity. Here, current literature is reviewed to identify and incorporate data regarding the effects of PFASs on innate immunity in humans, experimental models, and wildlife. Known mechanisms by which PFASs modulate innate immune function are also reviewed, including disruption of cell signaling, metabolism, and tissue-level effects. For PFASs where innate immune data are available, results are equivocal, raising additional questions about common mechanisms or pathways of toxicity, but highlighting that the innate immune system within several species can be perturbed by exposure to PFASs. Recommendations are provided for future research to inform hazard identification, risk assessment, and risk management practices for PFASs to protect the immune systems of exposed organisms as well as environmental health.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 1","pages":"2343362"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Consideration of the EXiLE test for predicting anaphylaxis after diclofenac etalhyaluronate administration. 流放试验预测双氯芬酸乙透明质酸给药后过敏反应的考虑。
IF 2.4 4区 医学
Journal of Immunotoxicology Pub Date : 2024-12-01 Epub Date: 2024-11-03 DOI: 10.1080/1547691X.2024.2417758
Haruyo Akiyama, Chisato Kurisaka, Dai Muramatsu, Shuhei Takada, Kei Toyama, Keiji Yoshioka, Ryosuke Nakamura
{"title":"Consideration of the EXiLE test for predicting anaphylaxis after diclofenac etalhyaluronate administration.","authors":"Haruyo Akiyama, Chisato Kurisaka, Dai Muramatsu, Shuhei Takada, Kei Toyama, Keiji Yoshioka, Ryosuke Nakamura","doi":"10.1080/1547691X.2024.2417758","DOIUrl":"https://doi.org/10.1080/1547691X.2024.2417758","url":null,"abstract":"<p><p>Diclofenac etalhyaluronate, an active pharmaceutical ingredient in JOYCLU<sup>®</sup> (JCL), serves as a joint function improvement agent in knee and hip osteoarthritis patients. However, frequent cases of anaphylaxis induced by JCL administration have been reported. Recent clinical research suggests the potential utility of the basophil activation test (BAT) in predicting JCL-induced anaphylaxis. Nonetheless, the BAT is deemed impractical for routine diagnostic testing due to complex procedures involving whole blood stimulation and flow cytometry-based analyses. In the study reported here, an IgE crosslinking-induced luciferase expression (EXiLE) test which uses patient sera without complicated procedures, was performed with patients who had received JCL, with or without subsequent anaphylactic symptoms. The results of this test were then compared with those of the BAT reported in a clinical research study. Of the six BAT-positive JCL-induced anaphylaxis-experienced patients, four were positive in the EXiLE test and all non-experienced patients were negative in both the BAT and EXiLE tests, thus illustrating a high concordance rate of 92.3%. Further validation of testing conditions is expected to improve these rates. Notably, complement inactivation treatment led to a positive EXiLE result in a BAT-negative patient. In conclusion, it appears that the EXiLE test exhibits promise as an alternative to BAT for predicting JCL-induced anaphylaxis, and in so doing offers a simpler diagnostic approach.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 1","pages":"2417758"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143006622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Type 2 responses determine skin rash during recombinant interleukin-2 therapy. 2型反应决定了重组白细胞介素-2治疗期间的皮疹。
IF 2.4 4区 医学
Journal of Immunotoxicology Pub Date : 2024-10-01 Epub Date: 2024-12-10 DOI: 10.1080/1547691X.2024.2343359
Charline Sommer, Vanessa Neuhaus, Patricia Gogesch, Thierry Flandre, Susann Dehmel, Katherina Sewald
{"title":"Type 2 responses determine skin rash during recombinant interleukin-2 therapy.","authors":"Charline Sommer, Vanessa Neuhaus, Patricia Gogesch, Thierry Flandre, Susann Dehmel, Katherina Sewald","doi":"10.1080/1547691X.2024.2343359","DOIUrl":"10.1080/1547691X.2024.2343359","url":null,"abstract":"<p><p>The skin is the organ most often affected by adverse drug reactions. Although these cutaneous adverse drug reactions (CADRs) often are mild, they represent a major burden for patients. One of the drugs inducing CADRs is aldesleukin, a recombinant interleukin-2 (recIL-2) originally approved to treat malignant melanoma and metastatic renal cell carcinoma which frequently led to skin rashes when applied in high doses for anti-cancer therapy. Skin rashes and other side effects, together with poor efficacy led to a drawback of the therapeutic, but modified recIL-2 molecules are on the rise to treat both cancer and inflammatory diseases such as autoimmunity. Still, pathophysiological mechanisms of recIL-2-induced skin rashes are not understood. In the study reported here, a hypothetical literature-based immune-related adverse outcome pathway (irAOP) was developed to identify possible key cells and molecules in recIL-2-induced skin rash. Using this approach, a hypothesis was formed that the induced immune response predominantly is Type 2-driven by T-helper and innate lymphoid cells, leading to the occurrence of cutaneous side effects during recIL-2 therapy. This paper further discusses mechanisms beyond the proposed irAOP which might add to the pathology but currently are less-studied. Together, this hypothetic irAOP forms a basis to clarify possible cellular and molecular interactions leading to recIL-2-induced skin rash. This might be used to adapt existing or develop new test systems to help predict and prevent cutaneous side effects in future IL-2-based or similar therapies.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 sup1","pages":"S48-S59"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using interactive platforms to encode, manage and explore immune-related adverse outcome pathways. 使用互动平台来编码、管理和探索免疫相关的不良后果途径。
IF 2.4 4区 医学
Journal of Immunotoxicology Pub Date : 2024-10-01 Epub Date: 2024-12-10 DOI: 10.1080/1547691X.2024.2345154
Alexander Mazein, Muhammad Shoaib, Miriam Alb, Christina Sakellariou, Charline Sommer, Katherina Sewald, Kristin Reiche, Patricia Gogesch, Luise A Roser, Samira Ortega Iannazzo, Sapna Sheth, Susanne Schiffmann, Zoe Waibler, Vanessa Neuhaus, Susann Dehmel, Venkata Satagopam, Reinhard Schneider, Marek Ostaszewski, Wei Gu
{"title":"Using interactive platforms to encode, manage and explore immune-related adverse outcome pathways.","authors":"Alexander Mazein, Muhammad Shoaib, Miriam Alb, Christina Sakellariou, Charline Sommer, Katherina Sewald, Kristin Reiche, Patricia Gogesch, Luise A Roser, Samira Ortega Iannazzo, Sapna Sheth, Susanne Schiffmann, Zoe Waibler, Vanessa Neuhaus, Susann Dehmel, Venkata Satagopam, Reinhard Schneider, Marek Ostaszewski, Wei Gu","doi":"10.1080/1547691X.2024.2345154","DOIUrl":"https://doi.org/10.1080/1547691X.2024.2345154","url":null,"abstract":"<p><p>This work focuses on the need for modeling and predicting adverse outcomes in immunotoxicology to improve nonclinical assessments of the safety of immunomodulatory therapies. The integrated approach includes, first, the adverse outcome pathway concept established in the toxicology field, and, second, the systems medicine disease map approach for describing molecular mechanisms involved in a particular pathology. The proposed systems immunotoxicology workflow is illustrated with chimeric antigen receptor (CAR) T cell treatment as a use case. To this end, the linear adverse outcome pathway (AOP) is expanded into a molecular interaction model in standard systems biology formats. Then it is shown how knowledge related to immunotoxic events can be integrated, encoded, managed, and explored to benefit the research community. The map is accessible online at https://imsavar.elixir-luxembourg.org <i>via</i> the MINERVA Platform for browsing, commenting, and data visualization. Our work transforms a graphical illustration of an AOP into a digitally structured and standardized form, featuring precise and controlled vocabulary and supporting reproducible computational analyses. Because of annotations to source literature and databases, the map can be further expanded to match the evolving knowledge and research questions.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 sup1","pages":"S5-S12"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using irAOP for non-clinical safety evaluation of biotechnology-derived pharmaceuticals and ATMPs: a paradigm shift into a systematic and holistic framework. 使用irAOP进行生物技术衍生药物和atmp的非临床安全性评估:范式转变为系统和整体框架。
IF 2.4 4区 医学
Journal of Immunotoxicology Pub Date : 2024-10-01 Epub Date: 2024-12-10 DOI: 10.1080/1547691X.2024.2390920
Armin Braun, Susann Dehmel
{"title":"Using irAOP for non-clinical safety evaluation of biotechnology-derived pharmaceuticals and ATMPs: a paradigm shift into a systematic and holistic framework.","authors":"Armin Braun, Susann Dehmel","doi":"10.1080/1547691X.2024.2390920","DOIUrl":"10.1080/1547691X.2024.2390920","url":null,"abstract":"<p><p>The chances and opportunities in modern biology inspired devising new therapeutics are mind blowing. The promises reach from successfully treating so-far incurable diseases like cancer and certain infections, to modulating and fine tuning the immune response to prolong the lifespan by inhibiting aging. However, as underlying therapies become more and more complex and sophisticated, it becomes increasingly difficult to find ways to ensure and predict the safety of these new therapeutics. The ICH guideline S6 (R1) from June 2011 EMA/CHMP/ICH/731268/ 1998 Committee for Medicinal Products for Human Use (CHMP) already stated \"Conventional approaches to toxicity testing of pharmaceuticals may not be appropriate for biopharmaceuticals due to the unique and diverse structural and biological properties of the latter that may include species specificity, immunogenicity, and unpredicted pleiotropic activities\" and is committed to a \"flexible, case-by-case, science-based approach to preclinical safety evaluation\". Initial approaches to this are described in the OECD Test Guidelines for new approach methods (NAM) with the newest update released in 2023 and alternative non-animal test guidelines (https://www.icapo.org/test-guidelines) provided from the International Council on Animal Protection in OECD Programmes (ICAPO; https://www.icapo.org). Beyond that, the European Union-funded innovative medicine initiative project Immune Safety Avatar (imSAVAR) decided to develop a systematic and holistic framework for non-clinical safety assessment of biopharmaceuticals and Advanced Therapy Medicinal Products (ATMP); thereby, the consortium focuses on immuno-regulatory therapeutics. Science-based approaches, such as the mechanistic description of adverse outcomes would be essential to demonstrate the safety of a particular new immuno-therapeutic agent. Here, we re-use the concept of adverse outcome pathways (AOP) to capture immune-related adverse outcomes (irAO), which are aimed to guide us to the use of relevant test systems and experiments. Thus, the focus within imSAVAR is on the use and (further) develop-ment of human and alternative models.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"21 sup1","pages":"S96-S98"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信