Anais do 14. Congresso Brasileiro de Inteligência Computacional最新文献

筛选
英文 中文
Classificação Local utilizando Least Square Support Vector Machine (LSSVM) 分类<s:1>局部效用最小二乘支持向量机(LSSVM)
Anais do 14. Congresso Brasileiro de Inteligência Computacional Pub Date : 2020-01-01 DOI: 10.21528/cbic2019-98
Rômulo Bandeira Pimentel Drumond, R. F. Albuquerque, D. P. Sousa, G. Barreto
{"title":"Classificação Local utilizando Least Square Support Vector Machine (LSSVM)","authors":"Rômulo Bandeira Pimentel Drumond, R. F. Albuquerque, D. P. Sousa, G. Barreto","doi":"10.21528/cbic2019-98","DOIUrl":"https://doi.org/10.21528/cbic2019-98","url":null,"abstract":"Resumo—Os modelos de classificação global são métodos que utilizam todo o conjunto de dados de treinamento disponı́vel para a construção de um único modelo que especifique a superfı́cie de separação dos dados. Alternativamente, modelos de classificação local baseiam-se na construção de classificadores locais treinados a partir de subconjuntos dos dados de treinamento. Este artigo apresenta um estudo sobre a abordagem de classificação local para projeto de classificadores baseados em máquinas de vetoressuporte de mı́nimos quadrados (LSSVM). As partições locais foram definidas a partir do algoritmo de agrupamento Kmédias. Os dados dos agrupamentos resultantes foram utilizados para treinar cada modelo LSSVM local. Diversos ı́ndices de validação de agrupamentos foram utilizados como critério de determinação do número de partições locais para cada problema de classificação estudado. Experimentos com vários conjuntos de dados de classificação foram realizados para comparar a abordagem local com a global. Keywords—Reconhecimento de Padrões; Modelos de Classificação Local; Máquinas de Vetores Suporte; K-médias; Least Squares Support Vector Machine;","PeriodicalId":160474,"journal":{"name":"Anais do 14. Congresso Brasileiro de Inteligência Computacional","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125394217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Linear Regression Models for Interval-Valued Data using Log-transformation 基于对数变换的区间值数据线性回归模型
Anais do 14. Congresso Brasileiro de Inteligência Computacional Pub Date : 2020-01-01 DOI: 10.21528/cbic2019-3
Nykolas Mayko Maia Barbosa, J. Gomes, C. Mattos, Diego Farias de Oliveira
{"title":"Linear Regression Models for Interval-Valued Data using Log-transformation","authors":"Nykolas Mayko Maia Barbosa, J. Gomes, C. Mattos, Diego Farias de Oliveira","doi":"10.21528/cbic2019-3","DOIUrl":"https://doi.org/10.21528/cbic2019-3","url":null,"abstract":"—Solving linear regression problems on interval- valued data is a challenging task that may arise in many applications. Because of that, many researchers have designed methods for such task in recent years. Although much effort has been devoted to this problem, all available methods rely on modeling the problem as a constrained optimization task, which may lead to sub-optimal results. Moreover, no previous work provide a way to train a model in a incremental way, which is fundamental for big data problems. In this paper, we address both problems by proposing two different linear regression methods based on log-transformations. The proposed methods, referred as Log-transformed OLS for interval data (LOID) and Log-transformed LMS for interval data (LLID), are compared to state-of-the-art methods on both synthetic and real-world datasets. The obtained results indicate the feasibility of our approaches. Furthermore, to the best of our knowledge, LLID is the first sequential linear regression method for interval valued.","PeriodicalId":160474,"journal":{"name":"Anais do 14. Congresso Brasileiro de Inteligência Computacional","volume":"125 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130724675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identificação do Perfil de Clientes Utilizando Redes Neurais Convolucionais 使用卷积神经网络识别客户档案
Anais do 14. Congresso Brasileiro de Inteligência Computacional Pub Date : 2020-01-01 DOI: 10.21528/cbic2019-45
V. D. Azevedo, Nadia Nedjah, Luiza de Macedo Mourelle
{"title":"Identificação do Perfil de Clientes Utilizando Redes Neurais Convolucionais","authors":"V. D. Azevedo, Nadia Nedjah, Luiza de Macedo Mourelle","doi":"10.21528/cbic2019-45","DOIUrl":"https://doi.org/10.21528/cbic2019-45","url":null,"abstract":"Resumo—Neste trabalho são utilizadas as técnicas de redes neurais convolucionais e aprendizagem profunda a fim de prever o interesse de usuários de redes sociais em determinadas categorias de produtos. O objetivo consiste em realizar a classificação de imagens de interesses de um certo tipo de usuário de redes sociais. A classificação de imagens permite segmentar usuários de redes sociais como potenciais consumidores de determinados tipos de produtos. Para isto foi realizada a comparação do desempenho dos seguintes algoritmos de taxa de aprendizagem adaptativa de redes neurais artificiais: descida do gradiente estocástico, descida de encosta adaptativa, estimativa de momento adaptativo e suas variações baseado na norma infinita e na raiz quadrada média dos gradientes. A comparação dos algoritmos de treinamento mostra que o algoritmo de estimativa de momento adaptativo é o mais adequado para prever o interesse e o perfil do usuário. A classificação de imagens em 17 subcategorias alcançou uma precisão de classificação de aproximadamente 99%. Keywords—Redes Neurais Convolucionais, Aprendizagem profunda, Classificação imagens de redes sociais, Identificação do perfil de clientes","PeriodicalId":160474,"journal":{"name":"Anais do 14. Congresso Brasileiro de Inteligência Computacional","volume":"135 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117338131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal Classification of Turbofan Engine Health using Elman Recurrent Network 基于Elman递归网络的涡扇发动机健康时序分类
Anais do 14. Congresso Brasileiro de Inteligência Computacional Pub Date : 2020-01-01 DOI: 10.21528/cbic2019-68
N. M. Nascimento, G. Barreto, C. N. Júnior, Pedro Rebouças Filho
{"title":"Temporal Classification of Turbofan Engine Health using Elman Recurrent Network","authors":"N. M. Nascimento, G. Barreto, C. N. Júnior, Pedro Rebouças Filho","doi":"10.21528/cbic2019-68","DOIUrl":"https://doi.org/10.21528/cbic2019-68","url":null,"abstract":"Prognosis and health management (PHM) plays an essential role in condition-based maintenance routines. For such purposes, academy and industry have devoted considerable efforts into providing efficient, safe and reliable solutions. In this regard, we aim at contributing to this field by proposing a temporal classifier for engine’s health state identification based on the Elman recurrent neural network. The evaluation of the proposed approach involves a benchmarking data set originated from the C-MAPSS, a flexible turbofan engine simulation by NASA. A comprehensive performance comparison with state of the art approaches is then carried out. The proposed system is able to identify engine’s total degradation 125 steps in advance, with 86.21% of confidence and low false negative rate, i.e. less than 2% of engines faulty conditions are identified as normal. With a temporal-based classification, the proposed approach reaches over 95% of accuracy on turbofan diagnosis.","PeriodicalId":160474,"journal":{"name":"Anais do 14. Congresso Brasileiro de Inteligência Computacional","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116360114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Comparativo de Algoritmos de Machine Learning para Identificação de Moscas da Espécie Drosophila suzukii Através de Imagens das Asas 通过翅膀图像识别铃木果蝇的机器学习算法的比较
Anais do 14. Congresso Brasileiro de Inteligência Computacional Pub Date : 2020-01-01 DOI: 10.21528/cbic2019-49
L. Sousa, C. Brandão, Iális Júnior
{"title":"Comparativo de Algoritmos de Machine Learning para Identificação de Moscas da Espécie Drosophila suzukii Através de Imagens das Asas","authors":"L. Sousa, C. Brandão, Iális Júnior","doi":"10.21528/cbic2019-49","DOIUrl":"https://doi.org/10.21528/cbic2019-49","url":null,"abstract":"A metodologia foi validada com os m´etodos de validac¸˜ao cruzada K-Fold e Leave One Out e na utilizac¸˜ao de seis classificadores dis-tintos: K-Vizinhos Mais Pr´oximos, M´aquina de Vetor de Suporte, An´alise por Discriminante Linear, An´alise por Discriminante Quadr´atico, ´Arvore de Decis˜ao e Floresta Aleat´oria. Os resultados obtidos foram satisfat´orios, com taxas de acerto superiores a 90%, validando a metodologia sugerida em ambos os cen´arios considerados, demonstrando efic´acia na resoluc¸˜ao de problemas que possuam base de imagens de tamanho reduzido.","PeriodicalId":160474,"journal":{"name":"Anais do 14. Congresso Brasileiro de Inteligência Computacional","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123614518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Constrained Neural Classifier for Pulsed Eddy Current based Flaw Detection in Industrial Pipes 基于脉冲涡流的工业管道缺陷检测约束神经分类器
Anais do 14. Congresso Brasileiro de Inteligência Computacional Pub Date : 2020-01-01 DOI: 10.21528/cbic2019-127
Gilvan Silva, E. Souza, P. Farias, E. Filho, Maria C. S. Albuquerque, I. Silva, C. Farias
{"title":"A Constrained Neural Classifier for Pulsed Eddy Current based Flaw Detection in Industrial Pipes","authors":"Gilvan Silva, E. Souza, P. Farias, E. Filho, Maria C. S. Albuquerque, I. Silva, C. Farias","doi":"10.21528/cbic2019-127","DOIUrl":"https://doi.org/10.21528/cbic2019-127","url":null,"abstract":"Decision support systems are important to improve the efficiency of nondestructive evaluation, specially for industrial equipment. Pulsed eddy-current is a magnetic method used for evaluation of metallic equipment. In this paper, is proposed the combination of pulsed eddy current evaluation, digital signal processing, and neural networks to detect flaws in industrial pipes. A novel method using particle swarm optimization is proposed for imposing performance constraints during neural classifier training process. Results obtained for experimental signals acquired from composite-insulated metallic industrial pipes presenting internal and external corrosion areas are used to validate the proposed method. A comparison to neural networks trained from the traditional back-propagation algorithm was presented.","PeriodicalId":160474,"journal":{"name":"Anais do 14. Congresso Brasileiro de Inteligência Computacional","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129851440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Empirical Analysis on the State of Transfer Learning for Small Data Text Classification Tasks Using Contextual Embeddings 基于上下文嵌入的小数据文本分类任务迁移学习状态实证分析
Anais do 14. Congresso Brasileiro de Inteligência Computacional Pub Date : 2020-01-01 DOI: 10.21528/cbic2019-82
F. Carvalho, C. Castro
{"title":"Empirical Analysis on the State of Transfer Learning for Small Data Text Classification Tasks Using Contextual Embeddings","authors":"F. Carvalho, C. Castro","doi":"10.21528/cbic2019-82","DOIUrl":"https://doi.org/10.21528/cbic2019-82","url":null,"abstract":"Recent developments in the NLP (Natural Language Processing) field have shown that deep transformer based language model architectures trained on a large corpus of unlabeled data are able to transfer knowledge to downstream tasks efficiently through fine-tuning. In particular, BERT and XLNet have shown impressive results, achieving state of the art performance in many tasks through this process. This is partially due to the ability these models have to create better representations of text in the form of contextual embeddings. However not much has been explored in the literature about the robustness of the transfer learning process of these models on a small data scenario. Also not a lot of effort has been put on analysing the behaviour of the two models fine-tuning process with different amounts of training data available. This paper addresses these questions through an empirical evaluation of these models on some datasets when finetuned on progressively smaller fractions of training data, for the task of text classification. It is shown that BERT and XLNet perform well with small data and can achieve good performance with very few labels available, in most cases. Results yielded with varying fractions of training data indicate that few examples are necessary in order to fine-tune the models and, although there is a positive effect in training with more labeled data, using only a subset of data is already enough to achieve a comparable performance with traditional non-deep learning models trained with substantially more data. Also it is noticeable how quickly the transfer learning curve of these methods saturate, reinforcing their ability to perform well with less data available. Keywords—Small data, text classification, NLP, contextual embeddings, representation learning, deep learning","PeriodicalId":160474,"journal":{"name":"Anais do 14. Congresso Brasileiro de Inteligência Computacional","volume":"69 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120894651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aplicação de Técnicas de Aprendizado de Máquina para Previsão do IBOVESPA 机器学习技术在IBOVESPA预测中的应用
Anais do 14. Congresso Brasileiro de Inteligência Computacional Pub Date : 2020-01-01 DOI: 10.21528/cbic2019-20
Matheus Hernandes, Leandro dos Santos Coelho, R. Z. Freire
{"title":"Aplicação de Técnicas de Aprendizado de Máquina para Previsão do IBOVESPA","authors":"Matheus Hernandes, Leandro dos Santos Coelho, R. Z. Freire","doi":"10.21528/cbic2019-20","DOIUrl":"https://doi.org/10.21528/cbic2019-20","url":null,"abstract":"Matheus Scalco Hernandes Engenharia de Produção, Escola Politécnica EP, Pontifícia Universidade Católica do Paraná PUCPR Curitiba, Brasil matheus.hernandes@pucpr.br Leandro dos Santos Coelho Programa de Pós-Graduação em Engenharia de Produção e Sistemas PPGEPS, Escola Politécnica EP, Pontifícia Universidade Católica do Paraná PUCPR Departamento de Engenharia Elétrica DEE, Universidade Federal do Paraná UFPR Curitiba, Brasil leandro.coelho@pucpr.br Roberto Zanetti Freire Programa de Pós-Graduação em Engenharia de Produção e Sistemas PPGEPS, Escola Politécnica EP, Pontifícia Universidade Católica do Paraná PUCPR Curitiba, Brasil roberto.freire@pucpr.br","PeriodicalId":160474,"journal":{"name":"Anais do 14. Congresso Brasileiro de Inteligência Computacional","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125324319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aprendizado por Instância para a Identificação de Classes Desconhecidas em Sonares Passivos 被动声纳中未知类识别的实例学习
Anais do 14. Congresso Brasileiro de Inteligência Computacional Pub Date : 2020-01-01 DOI: 10.21528/cbic2019-33
V. Muniz, J. S. Filho, E. Honorato
{"title":"Aprendizado por Instância para a Identificação de Classes Desconhecidas em Sonares Passivos","authors":"V. Muniz, J. S. Filho, E. Honorato","doi":"10.21528/cbic2019-33","DOIUrl":"https://doi.org/10.21528/cbic2019-33","url":null,"abstract":"Resumo —Em submarinos, a tarefa dos operadores de sonar consiste na identificac¸˜ao de poss´ıveis ameac¸as (contatos), utilizando, principalmente, o sistema de sonar passivo. Sistemas de classificac¸˜ao autom´atica de contatos requerem a identificac¸˜ao de embarcac¸˜oes de classes desconhecidas durante a sua operac¸˜ao. Este trabalho discute a construc¸˜ao de um sistema hier´arquico para o reconhecimento de tais ocorrˆencias, considerando um estudo experimental envolvendo t ´ ecnicas de aprendizado por instˆancia, em cen´arios de crescente complexidade, para este fim. Os experimentos, explorando dados coletados em raia ac´ustica de 28 navios pertencentes a 8 classes em diferentes condic¸˜oes operacionais, apontaram um melhor desempenho da t´ecnica k-Nearest Neighbors , atingindo uma taxa de detecc¸˜ao de novidades de 78,0%, conjugada com uma taxa m´edia de identificac¸˜ao de casos conhecidos de 95,0%, para um cen´ario com 3 classes conhecidas.","PeriodicalId":160474,"journal":{"name":"Anais do 14. Congresso Brasileiro de Inteligência Computacional","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133470118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Feature Extraction Using Convolutional Neural Networks for Anomaly Detection 基于卷积神经网络的异常检测特征提取
Anais do 14. Congresso Brasileiro de Inteligência Computacional Pub Date : 2020-01-01 DOI: 10.21528/cbic2019-7
R. Monteiro, C. B. Filho
{"title":"Feature Extraction Using Convolutional Neural Networks for Anomaly Detection","authors":"R. Monteiro, C. B. Filho","doi":"10.21528/cbic2019-7","DOIUrl":"https://doi.org/10.21528/cbic2019-7","url":null,"abstract":"Anomaly detection is an import field of study, which has many applications, e.g., fraud and disease detection. It consists of identifying non-conforming patterns regarding an expected behavior. Despite the improvements provided by deep learning techniques in several areas, their use for anomaly detection is not widespread. The main reason is the difficulty to learn discriminative models when all the information available regards one class, or the classes are highly unbalanced. We propose a new deep learning-based solution for the anomaly detection problem. It consists of a hybrid system, composed of a feature extractor and a one-class classifier. The feature extractor is a convolutional neural network, trained as a regressor to learn a predefined distribution. The classifier is the one-class support vector machine, which performs the anomaly detection by using the outputs provided by the feature extractor. We used a gearbox failure diagnosis data set to assess the performance of our proposal. We also compared our anomaly detection system with other deep learning-based techniques commonly found in the literature. Our proposal presented an average accuracy close to 0.95, outperforming techniques based on the reconstruction error and hybrid models. Keywords— Anomaly Detection; Deep Learning; One-Class Support Vector Machine; Convolutional Neural Network","PeriodicalId":160474,"journal":{"name":"Anais do 14. Congresso Brasileiro de Inteligência Computacional","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129272913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信