V. D. Azevedo, Nadia Nedjah, Luiza de Macedo Mourelle
{"title":"Identificação do Perfil de Clientes Utilizando Redes Neurais Convolucionais","authors":"V. D. Azevedo, Nadia Nedjah, Luiza de Macedo Mourelle","doi":"10.21528/cbic2019-45","DOIUrl":null,"url":null,"abstract":"Resumo—Neste trabalho são utilizadas as técnicas de redes neurais convolucionais e aprendizagem profunda a fim de prever o interesse de usuários de redes sociais em determinadas categorias de produtos. O objetivo consiste em realizar a classificação de imagens de interesses de um certo tipo de usuário de redes sociais. A classificação de imagens permite segmentar usuários de redes sociais como potenciais consumidores de determinados tipos de produtos. Para isto foi realizada a comparação do desempenho dos seguintes algoritmos de taxa de aprendizagem adaptativa de redes neurais artificiais: descida do gradiente estocástico, descida de encosta adaptativa, estimativa de momento adaptativo e suas variações baseado na norma infinita e na raiz quadrada média dos gradientes. A comparação dos algoritmos de treinamento mostra que o algoritmo de estimativa de momento adaptativo é o mais adequado para prever o interesse e o perfil do usuário. A classificação de imagens em 17 subcategorias alcançou uma precisão de classificação de aproximadamente 99%. Keywords—Redes Neurais Convolucionais, Aprendizagem profunda, Classificação imagens de redes sociais, Identificação do perfil de clientes","PeriodicalId":160474,"journal":{"name":"Anais do 14. Congresso Brasileiro de Inteligência Computacional","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do 14. Congresso Brasileiro de Inteligência Computacional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/cbic2019-45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Resumo—Neste trabalho são utilizadas as técnicas de redes neurais convolucionais e aprendizagem profunda a fim de prever o interesse de usuários de redes sociais em determinadas categorias de produtos. O objetivo consiste em realizar a classificação de imagens de interesses de um certo tipo de usuário de redes sociais. A classificação de imagens permite segmentar usuários de redes sociais como potenciais consumidores de determinados tipos de produtos. Para isto foi realizada a comparação do desempenho dos seguintes algoritmos de taxa de aprendizagem adaptativa de redes neurais artificiais: descida do gradiente estocástico, descida de encosta adaptativa, estimativa de momento adaptativo e suas variações baseado na norma infinita e na raiz quadrada média dos gradientes. A comparação dos algoritmos de treinamento mostra que o algoritmo de estimativa de momento adaptativo é o mais adequado para prever o interesse e o perfil do usuário. A classificação de imagens em 17 subcategorias alcançou uma precisão de classificação de aproximadamente 99%. Keywords—Redes Neurais Convolucionais, Aprendizagem profunda, Classificação imagens de redes sociais, Identificação do perfil de clientes