Journal of immunology最新文献

筛选
英文 中文
Single-cell Transcriptional Landscape of Temporal Neutrophil Response to Burn Wound in Larval Zebrafish. 幼体斑马鱼中性粒细胞对烧伤伤口的时序反应的单细胞转录景观
IF 3.6 3区 医学
Journal of immunology Pub Date : 2024-08-15 DOI: 10.4049/jimmunol.2400149
Yiran Hou, Parth Khatri, Julie Rindy, Zachery Schultz, Anqi Gao, Zhili Chen, Angela L F Gibson, Anna Huttenlocher, Huy Q Dinh
{"title":"Single-cell Transcriptional Landscape of Temporal Neutrophil Response to Burn Wound in Larval Zebrafish.","authors":"Yiran Hou, Parth Khatri, Julie Rindy, Zachery Schultz, Anqi Gao, Zhili Chen, Angela L F Gibson, Anna Huttenlocher, Huy Q Dinh","doi":"10.4049/jimmunol.2400149","DOIUrl":"10.4049/jimmunol.2400149","url":null,"abstract":"<p><p>Neutrophils accumulate early in tissue injury. However, the cellular and functional heterogeneity of neutrophils during homeostasis and in response to tissue damage remains unclear. In this study, we use larval zebrafish to understand neutrophil responses to thermal injury. Single-cell transcriptional mapping of myeloid cells during a 3-d time course in burn and control larvae revealed distinct neutrophil subsets and their cell-cell interactions with macrophages across time and conditions. The trajectory formed by three zebrafish neutrophil subsets resembles human neutrophil maturation, with varying transition patterns between conditions. Through ligand-receptor cell-cell interaction analysis, we found that neutrophils communicate more in burns in a pathway and temporal manner. Finally, we identified the correlation between zebrafish myeloid signatures and human burn severity, establishing GPR84+ neutrophils as a potential marker of early innate immune response in burns. This work builds a comparative single-cell transcriptomic framework to identify neutrophil markers of tissue damage using model organisms.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging the Architecture of Granulomas Induced by Mycobacterium tuberculosis Infection with Single-molecule Fluorescence In Situ Hybridization. 利用单分子荧光原位杂交技术对结核分枝杆菌感染诱发的肉芽肿结构进行成像。
IF 3.6 3区 医学
Journal of immunology Pub Date : 2024-08-15 DOI: 10.4049/jimmunol.2300068
Ranjeet Kumar, Afsal Kolloli, Selvakumar Subbian, Deepak Kaushal, Lanbo Shi, Sanjay Tyagi
{"title":"Imaging the Architecture of Granulomas Induced by Mycobacterium tuberculosis Infection with Single-molecule Fluorescence In Situ Hybridization.","authors":"Ranjeet Kumar, Afsal Kolloli, Selvakumar Subbian, Deepak Kaushal, Lanbo Shi, Sanjay Tyagi","doi":"10.4049/jimmunol.2300068","DOIUrl":"10.4049/jimmunol.2300068","url":null,"abstract":"<p><p>Granulomas are an important hallmark of Mycobacterium tuberculosis infection. They are organized and dynamic structures created when immune cells assemble around the sites of infection in the lungs that locally restrict M. tuberculosis growth and the host's inflammatory responses. The cellular architecture of granulomas is traditionally studied by immunofluorescence labeling of surface markers on the host cells. However, very few Abs are available for model animals used in tuberculosis research, such as nonhuman primates and rabbits, and secreted immunological markers such as cytokines cannot be imaged in situ using Abs. Furthermore, traditional phenotypic surface markers do not provide sufficient resolution for the detection of the many subtypes and differentiation states of immune cells. Using single-molecule fluorescence in situ hybridization (smFISH) and its derivatives, amplified smFISH and iterative smFISH, we developed a platform for imaging mRNAs encoding immune markers in rabbit and macaque tuberculosis granulomas. Multiplexed imaging for several mRNA and protein markers was followed by quantitative measurement of the expression of these markers in single cells. An analysis of the combinatorial expressions of these markers allowed us to classify the cells into several subtypes, and to chart their densities within granulomas. For one mRNA target, hypoxia-inducible factor-1α, we imaged its mRNA and protein in the same cells, demonstrating the specificity of the probes. This method paves the way for defining granular differentiation states and cell subtypes from transcriptomic data, identifying key mRNA markers for these cell subtypes, and then locating the cells in the spatial context of granulomas.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcription Factor Activity Regulating Macrophage Heterogeneity during Skin Wound Healing. 转录因子活性调节皮肤伤口愈合过程中巨噬细胞的异质性
IF 3.6 3区 医学
Journal of immunology Pub Date : 2024-08-15 DOI: 10.4049/jimmunol.2400172
Mehrdad Zandigohar, Jingbo Pang, Alannah Rodrigues, Rita E Roberts, Yang Dai, Timothy J Koh
{"title":"Transcription Factor Activity Regulating Macrophage Heterogeneity during Skin Wound Healing.","authors":"Mehrdad Zandigohar, Jingbo Pang, Alannah Rodrigues, Rita E Roberts, Yang Dai, Timothy J Koh","doi":"10.4049/jimmunol.2400172","DOIUrl":"10.4049/jimmunol.2400172","url":null,"abstract":"<p><p>Monocytes and macrophages (Mos/Mϕs) play diverse roles in wound healing by adopting a spectrum of functional phenotypes; however, the regulation of such heterogeneity remains poorly defined. We enhanced our previously published Bayesian inference TF activity model, incorporating both single-cell RNA sequencing and single-cell ATAC sequencing data to infer transcription factor (TF) activity in Mos/Mϕs during skin wound healing. We found that wound Mos/Mϕs clustered into early-stage Mos/Mϕs, late-stage Mϕs, and APCs, and that each cluster showed differential chromatin accessibility and differential predicted TF activity that did not always correlate with mRNA or protein expression. Network analysis revealed two highly connected large communities involving a total of 19 TFs, highlighting TF cooperation in regulating wound Mos/Mϕs. This analysis also revealed a small community populated by NR4A1 and NFKB1, supporting a proinflammatory link between these TFs. Importantly, we validated a proinflammatory role for NR4A1 activity during wound healing, showing that Nr4a1 knockout mice exhibit decreased inflammatory gene expression in early-stage wound Mos/Mϕs, along with delayed wound re-epithelialization and impaired granulation tissue formation. In summary, our study provides insight into TF activity that regulates Mo/Mϕ heterogeneity during wound healing and provides a rational basis for targeting Mo/Mϕ TF networks to alter phenotypes and improve healing.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300156/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ATP-elicited Cation Fluxes Promote Volume-regulated Anion Channel LRRC8/VRAC Transport cGAMP for Antitumor Immunity. ATP激发的阳离子通量促进体积调节阴离子通道LRRC8/VRAC转运cGAMP以增强抗肿瘤免疫力
IF 3.6 3区 医学
Journal of immunology Pub Date : 2024-08-01 DOI: 10.4049/jimmunol.2300812
Li Wang, Limin Cao, Zhihong Li, Zhugui Shao, Xia Chen, Zhicheng Huang, Xiaoxiao He, Junke Zheng, Li Liu, Xin-Ming Jia, Hui Xiao
{"title":"ATP-elicited Cation Fluxes Promote Volume-regulated Anion Channel LRRC8/VRAC Transport cGAMP for Antitumor Immunity.","authors":"Li Wang, Limin Cao, Zhihong Li, Zhugui Shao, Xia Chen, Zhicheng Huang, Xiaoxiao He, Junke Zheng, Li Liu, Xin-Ming Jia, Hui Xiao","doi":"10.4049/jimmunol.2300812","DOIUrl":"10.4049/jimmunol.2300812","url":null,"abstract":"<p><p>The cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway is instrumental to antitumor immunity, yet the underlying molecular and cellular mechanisms are complex and still unfolding. A new paradigm suggests that cancer cells' cGAS-synthesized cGAMP can be transferred to tumor-infiltrating immune cells, eliciting STING-dependent IFN-β response for antitumor immunity. Nevertheless, how the tumor microenvironment may shape this process remains unclear. In this study, we found that extracellular ATP, an immune regulatory molecule widely present in the tumor microenvironment, can potentiate cGAMP transfer, thereby boosting the STING signaling and IFN-β response in murine macrophages and fibroblasts. Notably, genetic ablation or chemical inhibition of murine volume-regulation anion channel LRRC8/volume-regulated anion channel (VRAC), a recently identified cGAMP transporter, abolished ATP-potentiated cGAMP transfer and STING-dependent IFN-β response, revealing a crucial role of LRRC8/VRAC in the cross-talk of extracellular ATP and cGAMP. Mechanistically, ATP activation of the P2X family receptors triggered Ca2+ influx and K+ efflux, promoting reactive oxygen species production. Moreover, ATP-evoked K+ efflux alleviated the phosphorylation of VRAC's obligate subunit LRRC8A/SWELL1 on S174. Mutagenesis studies indicated that the phosphorylation of S174 on LRRC8A could act as a checkpoint for VRAC in the steady state and a rheostat of ATP responsiveness. In an MC38-transplanted tumor model, systemically blocking CD39 and ENPP1, hydroxylases of extracellular ATP and cGAMP, respectively, elevated antitumor NK, NKT, and CD8+ T cell responses and restrained tumor growth in mice. Altogether, this study establishes a crucial role of ATP in facilitating LRRC8/VRAC transport cGAMP in the tumor microenvironment and provides new insight into harnessing cGAMP transfer for antitumor immunity.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A RORE-dependent Intronic Enhancer in the IL-7 Receptor-α Locus Controls Glucose Metabolism via Vγ4+ γδT17 Cells. IL-7 受体-α基因座中依赖于 RORE 的非线性增强子通过 Vγ4+ γδT17 细胞控制葡萄糖代谢。
IF 3.6 3区 医学
Journal of immunology Pub Date : 2024-08-01 DOI: 10.4049/jimmunol.2300450
Shizue Tani-Ichi, David Obwegs, Alice Yoshikawa, Hitomi Watanabe, Satsuki Kitano, Aki Ejima, Shinya Hatano, Hitoshi Miyachi, Guangwei Cui, Akihiro Shimba, Shinya Abe, Shohei Hori, Gen Kondoh, Sagar, Yasunobu Yoshikai, Koichi Ikuta
{"title":"A RORE-dependent Intronic Enhancer in the IL-7 Receptor-α Locus Controls Glucose Metabolism via Vγ4+ γδT17 Cells.","authors":"Shizue Tani-Ichi, David Obwegs, Alice Yoshikawa, Hitomi Watanabe, Satsuki Kitano, Aki Ejima, Shinya Hatano, Hitoshi Miyachi, Guangwei Cui, Akihiro Shimba, Shinya Abe, Shohei Hori, Gen Kondoh, Sagar, Yasunobu Yoshikai, Koichi Ikuta","doi":"10.4049/jimmunol.2300450","DOIUrl":"https://doi.org/10.4049/jimmunol.2300450","url":null,"abstract":"<p><p>The IL-7R regulates the homeostasis, activation, and distribution of T cells in peripheral tissues. Although several transcriptional enhancers that regulate IL-7Rα expression in αβ T cells have been identified, enhancers active in γδ T cells remain unknown. In this article, we discovered an evolutionarily conserved noncoding sequence (CNS) in intron 2 of the IL-7Rα-chain (IL-7Rα) locus and named this region CNS9. CNS9 contained a conserved retinoic acid receptor-related orphan receptor (ROR)-responsive element (RORE) and exerted RORγt-dependent enhancer activity in vitro. Mice harboring point mutations in the RORE in CNS9 (CNS9-RORmut) showed reduced IL-7Rα expression in IL-17-producing Vγ4+ γδ T cells. In addition, the cell number and IL-17A production of Vγ4+ γδ T cells were reduced in the adipose tissue of CNS9-RORmut mice. Consistent with the reduction in IL-17A, CNS9-RORmut mice exhibited decreased IL-33 expression in the adipose tissue, resulting in fewer regulatory T cells and glucose intolerance. The CNS9-ROR motif was partially responsible for IL-7Rα expression in RORγt+ regulatory T cells, whereas IL-7Rα expression was unaffected in RORγt-expressing Vγ2+ γδ T cells, Th17 cells, type 3 innate lymphoid cells, and invariant NKT cells. Our results indicate that CNS9 is a RORΕ-dependent, Vγ4+ γδ T cell-specific IL-7Rα enhancer that plays a critical role in adipose tissue homeostasis via regulatory T cells, suggesting that the evolutionarily conserved RORΕ in IL-7Rα intron 2 may influence the incidence of type 2 diabetes.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Both IRAK3 and IRAK1 Activate the MyD88-TRAF6 Pathway in Zebrafish. IRAK3 和 IRAK1 都能激活斑马鱼的 MyD88-TRAF6 通路
IF 3.6 3区 医学
Journal of immunology Pub Date : 2024-08-01 DOI: 10.4049/jimmunol.2400054
Panwei Weng, Mengjiao Lan, Hao Zhang, Huiping Fan, Xiao Wang, Chenrui Ran, Zirui Yue, Jiaxuan Hu, Anlong Xu, Shengfeng Huang
{"title":"Both IRAK3 and IRAK1 Activate the MyD88-TRAF6 Pathway in Zebrafish.","authors":"Panwei Weng, Mengjiao Lan, Hao Zhang, Huiping Fan, Xiao Wang, Chenrui Ran, Zirui Yue, Jiaxuan Hu, Anlong Xu, Shengfeng Huang","doi":"10.4049/jimmunol.2400054","DOIUrl":"10.4049/jimmunol.2400054","url":null,"abstract":"<p><p>IL-1R-associated kinases (IRAKs) are signal transducers of the TLR/IL-1R-MyD88-TRAF6 pathways. Vertebrates possess two IRAK lineages, IRAK1/2/3 and IRAK4. In mammals, IRAK4/IRAK1 and IRAK4/IRAK2 are pathway enhancers, whereas IRAK3 is a repressor. However, in bony fish, IRAK2 is absent, and it remains elusive how fish IRAK1/3/4 functionally differ from their mammalian counterparts. In this study, we explored this using the zebrafish model. First, we showed that in human 293T cells, zebrafish IRAK1 and IRAK4 were components of the Myddosome (MyD88-IRAK4-IRAK1) complex, with IRAK1 serving as a potent pathway enhancer. Then, we discovered two zebrafish IRAK3 variants: one (IRAK3a) contains an N-terminal Death domain, a middle pseudokinase domain, and a C-terminal TRAF6-binding domain, whereas the other (IRAK3b) lost both the kinase and TRAF6-binding domains. This truncation of IRAK3 variants could be a conserved phenomenon in fish, because it is also observed in trout and grass carp. We proceeded to show that zebrafish IRAK3a acts as a pathway enhancer by binding with MyD88 and TRAF6, but its activity is milder than IRAK1, possibly because it has no kinase activity. Zebrafish IRAK3b, however, plays a sheer negative role, apparently because of its lack of kinase and TRAF6-binding domains. Moreover, zebrafish IRAK3a/3b inhibit the activity of IRAK1/4, not by interacting with IRAK1/4 but possibly by competing for MyD88 and TRAF6. Finally, we have verified the essential activities of zebrafish IRAK1/3a/3b/4 in zebrafish cells and embryos. In summary, to our knowledge, our findings provide new insights into the molecular functions of fish IRAKs and the evolution of the IRAK functional modes in vertebrates.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytotoxic CD4+ T Cells Are Induced during Infection with Chlamydia trachomatis. 在沙眼衣原体感染过程中诱导细胞毒性 CD4+ T 细胞
IF 3.6 3区 医学
Journal of immunology Pub Date : 2024-08-01 DOI: 10.4049/jimmunol.2300131
Joanna Olivas, Caterina Nogueira, Jennifer Helble, Michael N Starnbach
{"title":"Cytotoxic CD4+ T Cells Are Induced during Infection with Chlamydia trachomatis.","authors":"Joanna Olivas, Caterina Nogueira, Jennifer Helble, Michael N Starnbach","doi":"10.4049/jimmunol.2300131","DOIUrl":"10.4049/jimmunol.2300131","url":null,"abstract":"<p><p>Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection in both men and women. Immunity to C. trachomatis involves many cell types, but CD4+ T cells play a key role in protecting the host during natural infection. Specifically, IFN-γ production by CD4+ T cells is the main effector responsible for bacterial clearance, yet the exact mechanism by which IFN-γ confers protection is poorly defined. In our efforts to define the specific mechanisms for bacterial clearance, we now show that IFN-γ upregulates expression of MHC class II (MHCII) on nonhematopoietic cells during C. trachomatis infection in vivo. We also find that MHCII expression on epithelial cells of the upper genital tract contributes to the efficient clearance of bacteria mediated by pathogen-specific CD4+ Th1 cells. As we further cataloged the protective mechanisms of C. trachomatis-specific CD4+ T cells, we found that the T cells also express granzyme B (GzmB) when coincubated with infected cells. In addition, during C. trachomatis infection of mice, primed activated-naive CD4+ Th1 cells displayed elevated granzyme transcripts (GzmA, GzmB, GzmM, GzmK, GzmC) compared with memory CD4+ T cells in vivo. Finally, using intracellular cytokine staining and a GzmB-/- mouse strain, we show that C. trachomatis-specific CD4+ Th1 cells express GzmB upon Ag stimulation, and that this correlates with Chlamydia clearance in vivo. Together these results have led us to conclude that Chlamydia-specific CD4+ Th1 cells develop cytotoxic capacity through engagement with nonhematopoietic MHCII, and this correlates to C. trachomatis clearance.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11279525/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Top Reads. 热门阅读
IF 3.6 3区 医学
Journal of immunology Pub Date : 2024-08-01 DOI: 10.4049/jimmunol.2490008
{"title":"Top Reads.","authors":"","doi":"10.4049/jimmunol.2490008","DOIUrl":"10.4049/jimmunol.2490008","url":null,"abstract":"","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-Cell RNA Sequencing Identifies WARS1+ Mesenchymal Stem Cells with Enhanced Immunomodulatory Capacity and Improved Therapeutic Efficacy. 单细胞 RNA 测序发现 WARS1+ 间充质干细胞具有更强的免疫调节能力和更好的疗效
IF 3.6 3区 医学
Journal of immunology Pub Date : 2024-08-01 DOI: 10.4049/jimmunol.2300752
Xiangxiao Li, Fengjiao Zhang, Libo Sun, Xiaojie Cai, Fangzhou Lou, Yang Sun, Min Gao, Zhikai Wang, Sibei Tang, Li Fan, Yue Wu, Xinping Jin, Siyu Deng, Zhenyao Xu, Xuxu Sun, Qun Li, Honglin Wang
{"title":"Single-Cell RNA Sequencing Identifies WARS1+ Mesenchymal Stem Cells with Enhanced Immunomodulatory Capacity and Improved Therapeutic Efficacy.","authors":"Xiangxiao Li, Fengjiao Zhang, Libo Sun, Xiaojie Cai, Fangzhou Lou, Yang Sun, Min Gao, Zhikai Wang, Sibei Tang, Li Fan, Yue Wu, Xinping Jin, Siyu Deng, Zhenyao Xu, Xuxu Sun, Qun Li, Honglin Wang","doi":"10.4049/jimmunol.2300752","DOIUrl":"10.4049/jimmunol.2300752","url":null,"abstract":"<p><p>Psoriasis is a common inflammatory skin disorder with no cure. Mesenchymal stem cells (MSCs) have immunomodulatory properties for psoriasis, but the therapeutic efficacies varied, and the molecular mechanisms were unknown. In this study, we improved the efficacy by enhancing the immunomodulatory effects of umbilical cord-derived MSCs (UC-MSCs). UC-MSCs stimulated by TNF-α and IFN-γ exhibited a better therapeutic effect in a mouse model of psoriasis. Single-cell RNA sequencing revealed that the stimulated UC-MSCs overrepresented a subpopulation expressing high tryptophanyl-tRNA synthetase 1 (WARS1). WARS1-overexpressed UC-MSCs treat psoriasis-like skin inflammation more efficiently than control UC-MSCs by restraining the proinflammatory macrophages. Mechanistically, WARS1 maintained a RhoA-Akt axis and governed the immunomodulatory properties of UC-MSCs. Together, we identify WARS1 as a master regulator of UC-MSCs with enhanced immunomodulatory capacities, which paves the way for the directed modification of UC-MSCs for escalated therapeutic efficacy.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Obesity Inhibits Alveolar Macrophage Responses to Pseudomonas aeruginosa Pneumonia via Upregulation of Prostaglandin E2 in Male, but Not Female, Mice. 肥胖通过上调雄性小鼠而非雌性小鼠的前列腺素 E2抑制肺泡巨噬细胞对铜绿假单胞菌肺炎的反应
IF 3.6 3区 医学
Journal of immunology Pub Date : 2024-08-01 DOI: 10.4049/jimmunol.2400140
Gabrielle P Entrup, Aayush Unadkat, Helen I Warheit-Niemi, Brooke Thomas, Stephen J Gurczynski, Yuxiao Cui, Andrew M Smith, Katherine A Gallagher, Bethany B Moore, Kanakadurga Singer
{"title":"Obesity Inhibits Alveolar Macrophage Responses to Pseudomonas aeruginosa Pneumonia via Upregulation of Prostaglandin E2 in Male, but Not Female, Mice.","authors":"Gabrielle P Entrup, Aayush Unadkat, Helen I Warheit-Niemi, Brooke Thomas, Stephen J Gurczynski, Yuxiao Cui, Andrew M Smith, Katherine A Gallagher, Bethany B Moore, Kanakadurga Singer","doi":"10.4049/jimmunol.2400140","DOIUrl":"10.4049/jimmunol.2400140","url":null,"abstract":"<p><p>Obesity is associated with increased morbidity and mortality during bacterial pneumonia. Cyclooxygenase-2 (COX-2) and PGE2 have been shown to be upregulated in patients who are obese. In this study, we investigated the role of obesity and PGE2 in bacterial pneumonia and how inhibition of PGE2 improves antibacterial functions of macrophages. C57BL/6J male and female mice were fed either a normal diet (ND) or high-fat diet (HFD) for 16 wk. After this time, animals were infected with Pseudomonas aeruginosa in the lung. In uninfected animals, alveolar macrophages were extracted for either RNA analysis or to be cultured ex vivo for functional analysis. HFD resulted in changes in immune cell numbers in both noninfected and infected animals. HFD animals had increased bacterial burden compared with ND animals; however, male HFD animals had higher bacterial burden compared with HFD females. Alveolar macrophages from HFD males had decreased ability to phagocytize and kill bacteria and were shown to have increased cyclooxygenase-2 and PGE2. Treating male, but not female, alveolar macrophages with PGE2 leads to increases in cAMP and decreased bacterial phagocytosis. Treatment with lumiracoxib-conjugated nanocarriers targeting alveolar macrophages improves bacterial phagocytosis and clearance in both ND and HFD male animals. Our study highlights that obesity leads to worse morbidity during bacterial pneumonia in male mice because of elevated PGE2. In addition, we uncover a sex difference in both obesity and infection, because females produce high basal PGE2 but because of a failure to signal via cAMP do not display impaired phagocytosis.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250913/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信