{"title":"Upcoming Meetings Related to Huntington's Disease.","authors":"","doi":"10.3233/JHD-239000","DOIUrl":"https://doi.org/10.3233/JHD-239000","url":null,"abstract":"","PeriodicalId":16042,"journal":{"name":"Journal of Huntington's disease","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9727882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Upcoming Meetings Related to Huntington's Disease.","authors":"","doi":"10.3233/JHD-239007","DOIUrl":"https://doi.org/10.3233/JHD-239007","url":null,"abstract":"","PeriodicalId":16042,"journal":{"name":"Journal of Huntington's disease","volume":"12 4","pages":"381"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138805875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Estevez-Fraga, Sarah J Tabrizi, Edward J Wild
{"title":"Huntington's Disease Clinical Trials Corner: August 2023.","authors":"Carlos Estevez-Fraga, Sarah J Tabrizi, Edward J Wild","doi":"10.3233/JHD-239001","DOIUrl":"https://doi.org/10.3233/JHD-239001","url":null,"abstract":"<p><p>In this edition of the Huntington's Disease Clinical Trials Corner, we expand on the GENERATION HD2 (tominersen) and on the Asklepios Biopharmaceutical/BrainVectis trial with AB-1001. We also comment on the recent findings from the PROOF-HD trial, and list all currently registered and ongoing clinical trials in Huntington's disease.</p>","PeriodicalId":16042,"journal":{"name":"Journal of Huntington's disease","volume":"12 2","pages":"169-185"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/62/19/jhd-12-jhd239001.PMC10473124.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10137360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Abstracts of the 30th Annual Meeting of the Huntington Study Group®, November 2-4, 2023.","authors":"","doi":"10.3233/JHD239005","DOIUrl":"10.3233/JHD239005","url":null,"abstract":"","PeriodicalId":16042,"journal":{"name":"Journal of Huntington's disease","volume":"12 s1","pages":"S1-S70"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71412539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sleep and Circadian Rhythm Dysfunction in Animal Models of Huntington's Disease.","authors":"A Jennifer Morton","doi":"10.3233/JHD-230574","DOIUrl":"https://doi.org/10.3233/JHD-230574","url":null,"abstract":"<p><p>Sleep and circadian disruption affects most individuals with Huntington's disease (HD) at some stage in their lives. Sleep and circadian dysregulation are also present in many mouse and the sheep models of HD. Here I review evidence for sleep and/or circadian dysfunction in HD transgenic animal models and discuss two key questions: 1) How relevant are such findings to people with HD, and 2) Whether or not therapeutic interventions that ameliorate deficits in animal models of HD might translate to meaningful therapies for people with HD.</p>","PeriodicalId":16042,"journal":{"name":"Journal of Huntington's disease","volume":"12 2","pages":"133-148"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f6/6f/jhd-12-jhd230574.PMC10473141.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10133510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Upregulated Chaperone-Mediated Autophagy May Perform a Key Role in Reduced Cancer Incidence in Huntington's Disease.","authors":"Lis Frydenreich Hasholt","doi":"10.3233/JHD-230586","DOIUrl":"10.3233/JHD-230586","url":null,"abstract":"<p><p>Incidence of cancer is markedly reduced in patients with the hereditary neurodegenerative polyglutamine (polyQ) diseases. We have very poor knowledge of the underlying molecular mechanisms, but the expanded polyQ sequence is assumed to play a central role, because it is common to the respective disease related proteins. The inhibition seems to take place in all kinds of cells, because the lower cancer frequency applies to nearly all types of tumors and is not related with the characteristic pathological changes in specific brain tissues. Further, the cancer repressing mechanisms appear to be active early in life including in pre-symptomatic and early phase polyQ patients. Autophagy plays a central role in clearing proteins with expanded polyQ tracts, and autophagy modulation has been demonstrated and particularly investigated in Huntington's disease (HD). Macroautophagy may be dysfunctional due to defects in several steps of the process, whereas increased chaperone-mediated autophagy (CMA) has been shown in HD patients, cell and animal models. Recently, CMA is assumed to play a key role in prevention of cellular transformation of normal cells into cancer cells. Investigations of normal cells from HD and other polyQ carriers could therefore add further insight into the protective mechanisms of CMA in tumorigenesis, and be important for development of autophagy based strategies to prevent malignant processes leading to cancer and neurodegeneration.</p>","PeriodicalId":16042,"journal":{"name":"Journal of Huntington's disease","volume":" ","pages":"371-376"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091607/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71482402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Upcoming Meetings Related to Huntington's Disease.","authors":"","doi":"10.3233/JHD-239004","DOIUrl":"https://doi.org/10.3233/JHD-239004","url":null,"abstract":"","PeriodicalId":16042,"journal":{"name":"Journal of Huntington's disease","volume":"12 2","pages":"187"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9900561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding Sleep Regulation in Normal and Pathological Conditions, and Why It Matters.","authors":"Mathieu Nollet, Nicholas P Franks, William Wisden","doi":"10.3233/JHD-230564","DOIUrl":"https://doi.org/10.3233/JHD-230564","url":null,"abstract":"<p><p>Sleep occupies a peculiar place in our lives and in science, being both eminently familiar and profoundly enigmatic. Historically, philosophers, scientists and artists questioned the meaning and purpose of sleep. If Shakespeare's verses from MacBeth depicting \"Sleep that soothes away all our worries\" and \"relieves the weary laborer and heals hurt minds\" perfectly epitomize the alleviating benefits of sleep, it is only during the last two decades that the growing understanding of the sophisticated sleep regulatory mechanisms allows us to glimpse putative biological functions of sleep. Sleep control brings into play various brain-wide processes occurring at the molecular, cellular, circuit, and system levels, some of them overlapping with a number of disease-signaling pathways. Pathogenic processes, including mood disorders (e.g., major depression) and neurodegenerative illnesses such Huntington's or Alzheimer's diseases, can therefore affect sleep-modulating networks which disrupt the sleep-wake architecture, whereas sleep disturbances may also trigger various brain disorders. In this review, we describe the mechanisms underlying sleep regulation and the main hypotheses drawn about its functions. Comprehending sleep physiological orchestration and functions could ultimately help deliver better treatments for people living with neurodegenerative diseases.</p>","PeriodicalId":16042,"journal":{"name":"Journal of Huntington's disease","volume":"12 2","pages":"105-119"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c1/f8/jhd-12-jhd230564.PMC10473105.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10515223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matt Spick, Thomas P M Hancox, Namrata R Chowdhury, Benita Middleton, Debra J Skene, A Jennifer Morton
{"title":"Metabolomic Analysis of Plasma in Huntington's Disease Transgenic Sheep (Ovis aries) Reveals Progressive Circadian Rhythm Dysregulation.","authors":"Matt Spick, Thomas P M Hancox, Namrata R Chowdhury, Benita Middleton, Debra J Skene, A Jennifer Morton","doi":"10.3233/JHD-220552","DOIUrl":"https://doi.org/10.3233/JHD-220552","url":null,"abstract":"<p><strong>Background: </strong>Metabolic abnormalities have long been predicted in Huntington's disease (HD) but remain poorly characterized. Chronobiological dysregulation has been described in HD and may include abnormalities in circadian-driven metabolism.</p><p><strong>Objective: </strong>Here we investigated metabolite profiles in the transgenic sheep model of HD (OVT73) at presymptomatic ages. Our goal was to understand changes to the metabolome as well as potential metabolite rhythm changes associated with HD.</p><p><strong>Methods: </strong>We used targeted liquid chromatography mass spectrometry (LC-MS) metabolomics to analyze metabolites in plasma samples taken from female HD transgenic and normal (control) sheep aged 5 and 7 years. Samples were taken hourly across a 27-h period. The resulting dataset was investigated by machine learning and chronobiological analysis.</p><p><strong>Results: </strong>The metabolic profiles of HD and control sheep were separable by machine learning at both ages. We found both absolute and rhythmic differences in metabolites in HD compared to control sheep at 5 years of age. An increase in both the number of disturbed metabolites and the magnitude of change of acrophase (the time at which the rhythms peak) was seen in samples from 7-year-old HD compared to control sheep. There were striking similarities between the dysregulated metabolites identified in HD sheep and human patients (notably of phosphatidylcholines, amino acids, urea, and threonine).</p><p><strong>Conclusion: </strong>This work provides the first integrated analysis of changes in metabolism and circadian rhythmicity of metabolites in a large animal model of presymptomatic HD.</p>","PeriodicalId":16042,"journal":{"name":"Journal of Huntington's disease","volume":"12 1","pages":"31-42"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9665059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isaline Mees, Rebecca Nisbet, Anthony Hannan, Thibault Renoir
{"title":"Implications of Tau Dysregulation in Huntington's Disease and Potential for New Therapeutics.","authors":"Isaline Mees, Rebecca Nisbet, Anthony Hannan, Thibault Renoir","doi":"10.3233/JHD-230569","DOIUrl":"https://doi.org/10.3233/JHD-230569","url":null,"abstract":"<p><p>Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. The disease, characterized by motor, cognitive, and psychiatric impairments, is caused by the expansion of a CAG repeat in the huntingtin gene. Despite the discovery of the mutation in 1993, no disease-modifying treatments are yet available. Understanding the molecular and cellular mechanisms involved in HD is therefore crucial for the development of novel treatments. Emerging research has found that HD might be classified as a secondary tauopathy, with the presence of tau insoluble aggregates in late HD. Increased total tau protein levels have been observed in both HD patients and animal models of HD. Tau hyperphosphorylation, the main feature of tau pathology, has also been investigated and our own published results suggest that the protein phosphorylation machinery is dysregulated in the early stages of HD in R6/1 transgenic mice, primarily in the cortex and striatum. Protein phosphorylation, catalysed by kinases, regulates numerous cellular mechanisms and has been shown to be dysregulated in other neurodegenerative disorders, including Alzheimer's disease. While it is still unclear how the mutation in the huntingtin gene leads to tau dysregulation in HD, several hypotheses have been explored. Evidence suggests that the mutant huntingtin does not directly interact with tau, but instead interacts with tau kinases, phosphatases, and proteins involved in tau alternative splicing, which could result in tau dysregulation as observed in HD. Altogether, there is increasing evidence that tau is undergoing pathological changes in HD and may be a good therapeutic target.</p>","PeriodicalId":16042,"journal":{"name":"Journal of Huntington's disease","volume":"12 1","pages":"1-13"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5e/fe/jhd-12-jhd230569.PMC10200226.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9666901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}