Journal of Geophysical Research: Biogeosciences最新文献

筛选
英文 中文
Changes of Nitrous Oxide Dynamics Induced by Typhoons: A Case in Zhanjiang Bay, China
IF 3.7 3区 环境科学与生态学
Journal of Geophysical Research: Biogeosciences Pub Date : 2025-03-08 DOI: 10.1029/2024JG008617
Shangjun Cai, Qibin Lao, Xuan Lu, Xin Zhou, Guangzhe Jin, Chunqing Chen, Fajin Chen
{"title":"Changes of Nitrous Oxide Dynamics Induced by Typhoons: A Case in Zhanjiang Bay, China","authors":"Shangjun Cai,&nbsp;Qibin Lao,&nbsp;Xuan Lu,&nbsp;Xin Zhou,&nbsp;Guangzhe Jin,&nbsp;Chunqing Chen,&nbsp;Fajin Chen","doi":"10.1029/2024JG008617","DOIUrl":"https://doi.org/10.1029/2024JG008617","url":null,"abstract":"<p>Under the influence of global climate change, both the frequency and intensity of typhoons are increasing. This study examines the impact of the typhoon on nitrous oxide (N<sub>2</sub>O) dynamics in coastal bays, which are the most active areas of N<sub>2</sub>O production in the ocean. Employing the <sup>15</sup>N stable isotope labeling technique, coupled with stable isotope mass spectrometry and analysis of key biogeochemical parameters, we conducted a series of five continuous cruises before (one cruise) and after typhoons Chaba (four cruises) in Zhanjiang Bay, a semiclosed coastal bay in the northern South China Sea. Our results showed that the landfall of the typhoon led to a sharp decrease in N<sub>2</sub>O concentration in Zhanjiang Bay. However, the typhoon also triggered a substantial production of N<sub>2</sub>O in both water column and sedimentary environments, therefore facilitating a rapid recovery of N<sub>2</sub>O levels within a short period. In the water column, typhoon-induced enhancement of in situ N<sub>2</sub>O production could be attributed to a substantial input of nutrients and terrestrial particles, which creates an anaerobic or hypoxic microenvironment conducive to N<sub>2</sub>O production. Concurrently, in the sediment, the deposition of particles derived from typhoon-induced phytoplankton blooms introduces a large amount of fresh particulate organic matter, further promoting N<sub>2</sub>O production. Our findings suggest that typhoons are an efficient nitrogen removal process, which has been previously underestimated. By elucidating aspects of the nitrogen cycle in bays during typhoons, this research aids in shaping policies to mitigate greenhouse gas emissions triggered by typhoons.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organic Carbon Remineralization and Calcium Carbonate Production Rates in the Red Sea Computed From Oxygen and Alkalinity Utilizations
IF 3.7 3区 环境科学与生态学
Journal of Geophysical Research: Biogeosciences Pub Date : 2025-03-07 DOI: 10.1029/2024JG008357
Salma Elageed, Abdirahman M. Omar, Emil Jeansson, Ingunn Skjelvan, Knut Barthel, Truls Johannessen
{"title":"Organic Carbon Remineralization and Calcium Carbonate Production Rates in the Red Sea Computed From Oxygen and Alkalinity Utilizations","authors":"Salma Elageed,&nbsp;Abdirahman M. Omar,&nbsp;Emil Jeansson,&nbsp;Ingunn Skjelvan,&nbsp;Knut Barthel,&nbsp;Truls Johannessen","doi":"10.1029/2024JG008357","DOIUrl":"https://doi.org/10.1029/2024JG008357","url":null,"abstract":"<p>Organic carbon remineralization rate (OCRR) and the calcium carbonate production rate (CCPR) are influential variables on the efficiency of the biological carbon pump (BCP) but are not well understood in Red Sea. We used historical cruise data of carbonate chemistry, oxygen, and transient tracers from five locations along the north–south central axis of the Red Sea to estimate OCRR and CCPR from tracer-based water mean ages (Γ), apparent oxygen utilization (AOU), and alkalinity utilization (AU). This resulted in the first basin-wide and depth-resolving (100–1,000 m) OCRR and CCPR estimates. Spatial distributions for Γ, AOU, and AU were strongly influenced by the large-scale circulation and showed maxima intermediate depths (400–500 m). Conversely, OCRR and CCPR showed no statistically significant latitudinal differences and peaked (6.5 ± 4.3 and 11.9 ± 4.6 mmol C m<sup>−3</sup> yr<sup>−1</sup>, respectively) at 100-m depth, which decreased to nearly constant values (3.8 ± 0.7 and 1.4 ± 0.3 mmol C m<sup>−3</sup> yr<sup>−1</sup>, respectively) at 300 m and deeper. By depth-integrating CCPR, we estimated annual calcium carbonate production (CCP) of (0.8 ± 0.3) × 10<sup>12</sup> mol, or 0.6% of global ocean production, in the Red Sea, which has only 0.12% of the world ocean area. High correlation between AU and Γ indicated in situ alkalinity removal taking place also in subsurface and deep waters, probably due to chemical precipitation, which has been previously reported for the area. CCP-induced AU affects the carbonate chemistry in the Red Sea water column, and we hypothesize that it also impacts that of the Gulf of Aden through the outflowing Red Sea Outflow Water.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alternating Drying and Flowing Phases Control Stream Metabolism Through Short- and Long-Term Effects: Insights From a River Network
IF 3.7 3区 环境科学与生态学
Journal of Geophysical Research: Biogeosciences Pub Date : 2025-03-07 DOI: 10.1029/2024JG008369
Naiara López-Rojo, Romain Sarremejane, Arnaud Foulquier, Gabriel Singer, Jacob Diamond, Delphine Rioux, Christian Miquel, Stephen Mulero, Clément Lionnet, Francisco J. Peñas, Amaia A. Rodeles, Thibault Datry
{"title":"Alternating Drying and Flowing Phases Control Stream Metabolism Through Short- and Long-Term Effects: Insights From a River Network","authors":"Naiara López-Rojo,&nbsp;Romain Sarremejane,&nbsp;Arnaud Foulquier,&nbsp;Gabriel Singer,&nbsp;Jacob Diamond,&nbsp;Delphine Rioux,&nbsp;Christian Miquel,&nbsp;Stephen Mulero,&nbsp;Clément Lionnet,&nbsp;Francisco J. Peñas,&nbsp;Amaia A. Rodeles,&nbsp;Thibault Datry","doi":"10.1029/2024JG008369","DOIUrl":"https://doi.org/10.1029/2024JG008369","url":null,"abstract":"<p>Stream metabolism is a key biogeochemical process in river networks, synthesizing the balance between gross primary production (GPP) and ecosystem respiration (ER). Globally, more rivers and streams are drying due to climate change and water abstraction for human uses and this can alter the organic carbon residence time leading to decoupled ER and terrestrial organic matter supply. Although the consequences of drying on CO<sub>2</sub> emissions have been recently quantified, its effects on stream metabolism are still poorly studied. We addressed the long-term effects of drying and rewetting events on stream metabolism by monitoring oxygen dynamics at 20 reaches across a drying river network, including perennial (PR) and nonperennial reaches (NPR) for one year. We also calculated several climatic and land use variables and characterized local abiotic conditions and biofilm and sediment communities at five sampling dates. ER was significantly higher in NPR than in PR reaches demonstrating in situ the effects of drying on stream metabolism. When analyzing the long-term drivers of ER and GPP, we found a direct positive effect of drying on ER and a negative effect on GPP. Drying also altered microbial community composition with algal communities from NPRs being different from those in PRs. In the short-term, the total oxygen consumption (respiration) during rewetting events was positively related to the duration of precedent nonflow period. Our results show that drying had an important effect on stream metabolism both in the short- and long term, supporting the need for including NPRs in global estimates of stream metabolism.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008369","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppression of Methanogenesis by Microbial Reduction of Iron-Organic Carbon Associations in Fully Thawed Permafrost Soil
IF 3.7 3区 环境科学与生态学
Journal of Geophysical Research: Biogeosciences Pub Date : 2025-03-07 DOI: 10.1029/2024JG008650
E. Voggenreiter, L. ThomasArrigo, M. Bottaro, J. Kilian, D. Straub, F. Ring-Hrubesh, C. Bryce, M. Stahl, A. Kappler, P. Joshi
{"title":"Suppression of Methanogenesis by Microbial Reduction of Iron-Organic Carbon Associations in Fully Thawed Permafrost Soil","authors":"E. Voggenreiter,&nbsp;L. ThomasArrigo,&nbsp;M. Bottaro,&nbsp;J. Kilian,&nbsp;D. Straub,&nbsp;F. Ring-Hrubesh,&nbsp;C. Bryce,&nbsp;M. Stahl,&nbsp;A. Kappler,&nbsp;P. Joshi","doi":"10.1029/2024JG008650","DOIUrl":"https://doi.org/10.1029/2024JG008650","url":null,"abstract":"<p>Global methane (CH<sub>4</sub>) emissions from thawing permafrost peatlands are expected to increase substantially in the future. Net emission of CH<sub>4</sub> depends on the presence of more favorable terminal electron acceptors for microbial respiration, such as ferric iron (Fe(III)). In soils with high OC content, Fe(III) is often coprecipitated with organic carbon (OC). The presence of Fe(III)-OC coprecipitates could either suppress CH<sub>4</sub> emissions due to inhibition of methanogenesis and stimulation of anaerobic methane oxidation coupled to Fe(III) reduction, or enhance emissions by providing additional OC. Here, we investigated the role of Fe(III)-OC coprecipitates in net CH<sub>4</sub> release in a fully thawed, waterlogged permafrost peatland (Stordalen Mire, Abisko, Sweden). We synthesized Fe(III)-OC coprecipitates using natural organic matter from the field site and added them to waterlogged soil in a microcosm experiment and in situ, and followed Fe speciation and changes in greenhouse gas emissions over time. Fe(III)-OC coprecipitates were partially reduced (22%) within 42 days in the microcosm experiment, while almost full reduction (92 ± 4%) occurred in situ within 53 days. This led to a decrease in CH<sub>4</sub> emissions by 94% and 40% in the microcosm and field experiments, respectively, compared to no-coprecipitate controls. A decrease in both RNA-based <i>mcrA</i> copy numbers and relative abundance of detected methanogens indicated that methanogenesis was mainly inhibited by the addition of the coprecipitates due to microbial Fe(III) reduction. In conclusion, Fe(III)-OC coprecipitates temporarily suppress net CH<sub>4</sub> emissions in fully thawed permafrost soils, and might play a similar role in mitigating CH<sub>4</sub> release in other (periodically) flooded soils.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008650","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnitude Shifts in Aeolian Sediment Transport Associated With Degradation and Restoration Thresholds in Drylands
IF 3.7 3区 环境科学与生态学
Journal of Geophysical Research: Biogeosciences Pub Date : 2025-03-06 DOI: 10.1029/2024JG008581
Nicholas P. Webb, Brandi Wheeler, Brandon L. Edwards, Jeremy W. Schallner, Neeshia Macanowicz, Justin W. Van Zee, Ericha M. Courtright, Brad Cooper, Sarah E. McCord, Dawn Browning, Saroj Dhital, Kristina E. Young, Brandon T. Bestelmeyer
{"title":"Magnitude Shifts in Aeolian Sediment Transport Associated With Degradation and Restoration Thresholds in Drylands","authors":"Nicholas P. Webb,&nbsp;Brandi Wheeler,&nbsp;Brandon L. Edwards,&nbsp;Jeremy W. Schallner,&nbsp;Neeshia Macanowicz,&nbsp;Justin W. Van Zee,&nbsp;Ericha M. Courtright,&nbsp;Brad Cooper,&nbsp;Sarah E. McCord,&nbsp;Dawn Browning,&nbsp;Saroj Dhital,&nbsp;Kristina E. Young,&nbsp;Brandon T. Bestelmeyer","doi":"10.1029/2024JG008581","DOIUrl":"https://doi.org/10.1029/2024JG008581","url":null,"abstract":"<p>Vegetation change in drylands can influence wind erosion and sand and dust storms (SDS) with far-reaching consequences for Earth systems and society. Although vegetation is recognized as an important control on wind erosion and SDS, the interactions are not well described at the landscape level or in the context of dryland ecosystem change. The transition of sites from one ecological state to another (e.g., grassland to shrubland) is typically associated with changes in the composition, cover, and structure of vegetation, which influence drag partitioning and wind shear velocities that drive aeolian sediment transport. Here, we quantify the magnitude and direction of aeolian sediment transport responses to ecological state change in the northern Chihuahuan Desert and identify thresholds associated with state transitions. Our results show aeolian sediment mass flux (<i>Q</i>) increased from ∼1 to 10 g m<sup>−1</sup> d<sup>−1</sup> in historical grassland with scattered shrubs to ∼10–100 g m<sup>−1</sup> d<sup>−1</sup> following shrub invasion and decline in perennial grass cover to ∼100–10,000 g m<sup>−1</sup> d<sup>−1</sup> in shrubland following complete grass loss. The magnitude shifts were associated with critical perennial grass cover thresholds governing nonlinear increases in <i>Q</i> across ecological state transitions. Grass recovery in shrubland reduced <i>Q</i> to rates similar to those in historical grasslands—a multiple order of magnitude reduction. Our results show that crossing degradation and restoration thresholds between alternative ecological states can have a profound effect on the magnitude and spatiotemporal variability of aeolian sediment transport and primacy in determining patterns of wind erosion and dust emissions in vegetated drylands.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008581","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Resolution Sensors Reveal Nitrate and Dissolved Silica Dynamics in an Arctic Fjord
IF 3.7 3区 环境科学与生态学
Journal of Geophysical Research: Biogeosciences Pub Date : 2025-03-04 DOI: 10.1029/2024JG008523
Alexander D. Beaton, Katharine R. Hendry, Jade E. Hatton, Matthew D. Patey, Matthew Mowlem, Geraldine Clinton-Bailey, Patricia Lopez-Garcia, E. Malcolm S. Woodward, Lorenz Meire
{"title":"High-Resolution Sensors Reveal Nitrate and Dissolved Silica Dynamics in an Arctic Fjord","authors":"Alexander D. Beaton,&nbsp;Katharine R. Hendry,&nbsp;Jade E. Hatton,&nbsp;Matthew D. Patey,&nbsp;Matthew Mowlem,&nbsp;Geraldine Clinton-Bailey,&nbsp;Patricia Lopez-Garcia,&nbsp;E. Malcolm S. Woodward,&nbsp;Lorenz Meire","doi":"10.1029/2024JG008523","DOIUrl":"https://doi.org/10.1029/2024JG008523","url":null,"abstract":"<p>Subglacial weathering releases biologically important nutrients into meltwaters that have the potential to influence downstream ecosystems. There is a need to understand how accelerated glacial retreat could impact biogeochemical cycling in coastal regions in the near future. However, fjords—important gateways connecting the Greenland ice sheet and coastal oceans—are highly heterogeneous environments both in space and time. Here, we investigate temporal variability of nutrient dynamics in a glacier-fed fjord (Nuup Kangerlua, Greenland) using a high resolution record of nitrate + nitrite (∑NO<sub>x</sub>) and dissolved silica (DSi), coupled with temperature and salinity, using submersible in situ sensors. During a 3-month monitoring period (14th June to 13 September 2019), ∑NO<sub>x</sub> varied between 0.05 and 10.07 μM (±0.2 μM), whereas DSi varied between 0.35 and 14.98 μM (±0.5 μM). Both nutrients started low (following the spring bloom) and increased throughout the monitoring period. Several large peaks in both nutrients were observed, and these can largely be associated with meltwater runoff and upwelling events. Peaks in DSi were likely the direct result of glacial meltwater pulses, whereas elevated ∑NO<sub>x</sub> concentrations in the fjord system were likely the result of meltwater-induced upwelling of marine sources. However, we did not observe a case of simple conservative mixing, suggesting that other processes in the fjord system (e.g., differential biological uptake and remineralization) may decouple the relationship between the two nutrients. This data set was used to investigate the biogeochemical impact of changes in glacier meltwater input throughout the melt season.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008523","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143533381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preferential Groundwater Discharges Along Stream Corridors Are Disregarded Sources of Greenhouse Gases
IF 3.7 3区 环境科学与生态学
Journal of Geophysical Research: Biogeosciences Pub Date : 2025-03-04 DOI: 10.1029/2024JG008395
A. M. Bisson, F. Liu, E. M. Moore, M. A. Briggs, A. M. Helton
{"title":"Preferential Groundwater Discharges Along Stream Corridors Are Disregarded Sources of Greenhouse Gases","authors":"A. M. Bisson,&nbsp;F. Liu,&nbsp;E. M. Moore,&nbsp;M. A. Briggs,&nbsp;A. M. Helton","doi":"10.1029/2024JG008395","DOIUrl":"https://doi.org/10.1029/2024JG008395","url":null,"abstract":"<p>Groundwater delivery of greenhouse gases (GHGs) to stream banks and riparian areas, before mixing with surface waters, has not been well quantified. We measured preferential groundwater delivery of GHGs to stream banks within three stream reaches, and found that stream banks with discharging groundwater emitted more CO<sub>2</sub> and were sources of N<sub>2</sub>O compared to stream banks without actively discharging groundwater, which emitted less CO<sub>2</sub> and were N<sub>2</sub>O sinks. At one of our stream reaches, groundwater CO<sub>2</sub> and N<sub>2</sub>O concentrations were 1.4–19.2 and 1.1–40.6 times higher than those in surface water, respectively, and groundwater delivery rates of CO<sub>2</sub> and N<sub>2</sub>O were 1.5 and 1.6 times higher than surface water emissions per unit area. On average, 21% (range 0%–100%) of CO<sub>2</sub> and N<sub>2</sub>O were emitted at the stream bank before mixing with surface waters. Preferential groundwater GHG emissions may contribute substantially to stream corridor emissions and may be underestimated when using a channel-centric approach to estimate riverine GHG budgets.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143533380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon Burial (in)Efficiency: Tracking the Molecular Fingerprint of In Situ Organic Matter Burial Using a 30-Year Freeze-Core Series From a Northern Boreal Lake (Nylandssjön, Sweden)
IF 3.7 3区 环境科学与生态学
Journal of Geophysical Research: Biogeosciences Pub Date : 2025-03-02 DOI: 10.1029/2024JG008397
Richard Bindler, Julie Tolu, Christian Bigler, Johan Rydberg, Antonio Martínez Cortizas
{"title":"Carbon Burial (in)Efficiency: Tracking the Molecular Fingerprint of In Situ Organic Matter Burial Using a 30-Year Freeze-Core Series From a Northern Boreal Lake (Nylandssjön, Sweden)","authors":"Richard Bindler,&nbsp;Julie Tolu,&nbsp;Christian Bigler,&nbsp;Johan Rydberg,&nbsp;Antonio Martínez Cortizas","doi":"10.1029/2024JG008397","DOIUrl":"https://doi.org/10.1029/2024JG008397","url":null,"abstract":"<p>Organic carbon (OC) burial rates in northern lakes are estimated to have increased by 2–3 fold over the past 150 years. However, assessing OC burial efficiency is challenging because (a) long-term (decadal) process are difficult to study in situ, and (b) sediment organic matter (OM) consists of thousands of different compounds from both terrestrial and aquatic sources, which are subject to different degrees of degradation, transformation, or preservation. Here, we used pyrolysis–gas chromatography/mass spectrometry to track changes in the organic molecular composition of individual varve years in a series of sediment freeze cores collected during 1979–2010, allowing us to assess diagenetic changes over ≤31 years (or 12.5 cm depth). As predicted from previous work, the greatest losses over time/depth (18–19 years; 8.5 cm) are for compounds indicative of fresh OM, both terrestrial (e.g., levosugars with 58%–77% lost) and particularly aquatic origin (e.g., phytadiene and phytene amongst chlorophylls with 40%–82% lost). This high variability in degradation of specific compounds has implications for interpreting past changes in C and N. Although OM composition changes only slightly beyond 20 years (8.5 cm), the chlorophyll:lignin ratio (fresh vs. degraded compounds) continues to decline to 31 years (12.5 cm) and is predicted to continue up to 100 years (37 cm depth). In most northern lakes, indications of OM degradation to these depths correspond to sediment ages of 50 to &gt;150 years, suggesting that much of the recent increase in OC burial in northern lakes does not represent permanent sequestration of C.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008397","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Deep Learning Approach of Artificial Neural Network With Attention Mechanism to Predicting Marine Biogeochemistry Data
IF 3.7 3区 环境科学与生态学
Journal of Geophysical Research: Biogeosciences Pub Date : 2025-03-02 DOI: 10.1029/2024JG008386
Mingzhi Liu, Yipeng Wang, Guoqiang Zhong, Yongxin Liu, Xiaoqing Liu, Jifan Shi, Yangli Che, Rui Bao
{"title":"A Deep Learning Approach of Artificial Neural Network With Attention Mechanism to Predicting Marine Biogeochemistry Data","authors":"Mingzhi Liu,&nbsp;Yipeng Wang,&nbsp;Guoqiang Zhong,&nbsp;Yongxin Liu,&nbsp;Xiaoqing Liu,&nbsp;Jifan Shi,&nbsp;Yangli Che,&nbsp;Rui Bao","doi":"10.1029/2024JG008386","DOIUrl":"https://doi.org/10.1029/2024JG008386","url":null,"abstract":"<p>Predicting marine biogeochemical data is an effective method to solve the problem of marine data-scarcity and provides data support for fundamental research in marine science. Machine learning techniques are commonly used to improve the stability and accuracy of predicting biogeochemistry data. However, current methods based on Random Forest (RF) and Artificial Neural network (ANN) often struggle to effectively capture the intricate features of ocean data, resulting in suboptimal prediction accuracy. In this study, we develop a novel deep learning method called artificial neural network with attention mechanism (ANN-att) for predicting marine biogeochemistry data. We compare and evaluate the performance of RF, ANN, and ANN-att based on two widely used ocean data sets in marine biogeochemistry: GLODAP v2.2022 and MOSAIC 2.0. Our results show that the prediction accuracy of the ANN-att method is higher than other methods by 6% for GLODAP v2.2022 and 30% for MOSAIC v.2.0. Additionally, the prediction maps of surface ocean dissolved oxygen and Δ<sup>14</sup>C in the West Pacific demonstrate that ANN-att has a significant advantage in predicting marine biogeochemistry data with stronger nonlinear characteristics.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Situ Reduction of Fe(III) (Hydr)oxides-Bound As(V) via Electron Shuttling in the Presence of Organic Matter
IF 3.7 3区 环境科学与生态学
Journal of Geophysical Research: Biogeosciences Pub Date : 2025-02-28 DOI: 10.1029/2024JG008675
Zhengqi Su, Huaming Guo, Zhipeng Gao, Tiantian Ke, Xiaojun Feng, Lingzhi Zhang
{"title":"In Situ Reduction of Fe(III) (Hydr)oxides-Bound As(V) via Electron Shuttling in the Presence of Organic Matter","authors":"Zhengqi Su,&nbsp;Huaming Guo,&nbsp;Zhipeng Gao,&nbsp;Tiantian Ke,&nbsp;Xiaojun Feng,&nbsp;Lingzhi Zhang","doi":"10.1029/2024JG008675","DOIUrl":"https://doi.org/10.1029/2024JG008675","url":null,"abstract":"<p>Although the reduction of pentavalent arsenic (As(V)) bound to Fe(III) (hydr)oxides (As(V)-containing FeOOH) coupled with organic matter (OM) degradation has received extensive attention, little is known about in situ reduction of FeOOH mineral-bound As(V) (As(V)<sub>(s)</sub>) via electron shuttling in the presence of As(V)-reducing bacteria (AsRB). Here, anthraquinone-2,6-disulfonate (AQDS), Suwannee River humic acid (SRHA), and fulvic acid (SRFA) were used to establish an agar electron shuttle system with ferrihydrite-As(V)/goethite-As(V) and AsRB, which was isolated from high-As groundwater as the candidate strain (RA-1). We found that AQDS was more efficient in shuttling electrons to reduce As(V)<sub>(s)</sub> and Fe(III) than SRHA and SRFA. High contents of quinone moieties in AQDS indicated that quinone moieties were conducive to As(V)<sub>(s)</sub> and Fe(III) reduction. The reduction kinetic rates (<i>K</i><sub>red</sub>) of As(V)<sub>(s)</sub> were higher than those of Fe(III), indicating the occurrence of in situ As(V)<sub>(s)</sub> reduction via electron shuttling. Furthermore, <i>K</i><sub>red</sub> of As(V)<sub>(s)</sub> for ferrihydrite-As(V) systems was greater than that of goethite-As(V) systems, demonstrating that As(V) bound to ferrihydrite via monodentate was more easily reduced than that bound to goethite via bidentate. The relative expression levels of As metabolic genes (<i>ars</i>C, <i>arr</i>A, and <i>ars</i>B) initially increased and then decreased in the late stage of experiments. High As concentrations in suspension inhibited the transcriptional activity of As metabolic genes in the late stage, reducing the electron production efficiency of RA-1 and subsequently slowing in situ reduction of As(V)<sub>(s)</sub>. This study highlights the importance of OM electron shuttling in the reduction of As(V)<sub>(s)</sub>, offering new perspectives in As enrichment in groundwater.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143513845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信