Yuseung Shin, Alexander J. Reisinger, Madison Flint, Tatiana Salinas, Jonathan B. Martin, Matthew J. Cohen
{"title":"营养限制导致产量从光控最大值下降","authors":"Yuseung Shin, Alexander J. Reisinger, Madison Flint, Tatiana Salinas, Jonathan B. Martin, Matthew J. Cohen","doi":"10.1029/2024JG008597","DOIUrl":null,"url":null,"abstract":"<p>Nutrient impacts on productivity in stream ecosystems can be obscured by light limitation imposed by canopy cover and water turbidity, thereby creating uncertainties in linking nutrient and productivity regimes. Evaluations of nutrient limitations are often based on a response ratio (RR) quantifying productivity stimulation above ambient levels given augmented nutrient supply. This metric neglects the primacy of light effects on productivity. We propose an alternative approach to quantify nutrient limitations using a “decline ratio” (DR), which quantifies the productivity decline from the maximum established by light availability. The DR treats light as the first-order control and nutrient depletion as a disturbance causing productivity decline, allowing separation of nutrient and light influences. We used DR to assess nutrient diffusing substrate (NDS) experiments with three nutrients (nitrogen [N], phosphorus [P], iron [Fe]) from five Greenland streams during summer, where light is not limited due to the lack of canopy and low turbidity. We tested two hypotheses: (a) productivity maximum (i.e., highest chlorophyll-<i>a</i> among NDS treatments) is controlled by light and (b) DR depends on both light and nutrients. The productivity maximum was strongly predicted by light (<i>R</i><sup>2</sup> = 0.60). The productivity decline induced by N limitation (i.e., DR<sub>N</sub>) was best explained by light availability when parameterized with either dissolved inorganic nitrogen concentration (<i>R</i><sup>2</sup> = 0.79) or N:Fe ratio (<i>R</i><sup>2</sup> = 0.87). These predictions outperformed predictions of RR for which light was not a significant factor. Reversing the perspective on nutrient limitation from “stimulation above ambient” to “decline below maximum” provides insights into both light and nutrient impacts on stream productivity.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008597","citationCount":"0","resultStr":"{\"title\":\"Nutrient Limitation Induces a Productivity Decline From Light-Controlled Maximum\",\"authors\":\"Yuseung Shin, Alexander J. Reisinger, Madison Flint, Tatiana Salinas, Jonathan B. Martin, Matthew J. Cohen\",\"doi\":\"10.1029/2024JG008597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nutrient impacts on productivity in stream ecosystems can be obscured by light limitation imposed by canopy cover and water turbidity, thereby creating uncertainties in linking nutrient and productivity regimes. Evaluations of nutrient limitations are often based on a response ratio (RR) quantifying productivity stimulation above ambient levels given augmented nutrient supply. This metric neglects the primacy of light effects on productivity. We propose an alternative approach to quantify nutrient limitations using a “decline ratio” (DR), which quantifies the productivity decline from the maximum established by light availability. The DR treats light as the first-order control and nutrient depletion as a disturbance causing productivity decline, allowing separation of nutrient and light influences. We used DR to assess nutrient diffusing substrate (NDS) experiments with three nutrients (nitrogen [N], phosphorus [P], iron [Fe]) from five Greenland streams during summer, where light is not limited due to the lack of canopy and low turbidity. We tested two hypotheses: (a) productivity maximum (i.e., highest chlorophyll-<i>a</i> among NDS treatments) is controlled by light and (b) DR depends on both light and nutrients. The productivity maximum was strongly predicted by light (<i>R</i><sup>2</sup> = 0.60). The productivity decline induced by N limitation (i.e., DR<sub>N</sub>) was best explained by light availability when parameterized with either dissolved inorganic nitrogen concentration (<i>R</i><sup>2</sup> = 0.79) or N:Fe ratio (<i>R</i><sup>2</sup> = 0.87). These predictions outperformed predictions of RR for which light was not a significant factor. Reversing the perspective on nutrient limitation from “stimulation above ambient” to “decline below maximum” provides insights into both light and nutrient impacts on stream productivity.</p>\",\"PeriodicalId\":16003,\"journal\":{\"name\":\"Journal of Geophysical Research: Biogeosciences\",\"volume\":\"130 4\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008597\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Biogeosciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008597\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008597","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Nutrient Limitation Induces a Productivity Decline From Light-Controlled Maximum
Nutrient impacts on productivity in stream ecosystems can be obscured by light limitation imposed by canopy cover and water turbidity, thereby creating uncertainties in linking nutrient and productivity regimes. Evaluations of nutrient limitations are often based on a response ratio (RR) quantifying productivity stimulation above ambient levels given augmented nutrient supply. This metric neglects the primacy of light effects on productivity. We propose an alternative approach to quantify nutrient limitations using a “decline ratio” (DR), which quantifies the productivity decline from the maximum established by light availability. The DR treats light as the first-order control and nutrient depletion as a disturbance causing productivity decline, allowing separation of nutrient and light influences. We used DR to assess nutrient diffusing substrate (NDS) experiments with three nutrients (nitrogen [N], phosphorus [P], iron [Fe]) from five Greenland streams during summer, where light is not limited due to the lack of canopy and low turbidity. We tested two hypotheses: (a) productivity maximum (i.e., highest chlorophyll-a among NDS treatments) is controlled by light and (b) DR depends on both light and nutrients. The productivity maximum was strongly predicted by light (R2 = 0.60). The productivity decline induced by N limitation (i.e., DRN) was best explained by light availability when parameterized with either dissolved inorganic nitrogen concentration (R2 = 0.79) or N:Fe ratio (R2 = 0.87). These predictions outperformed predictions of RR for which light was not a significant factor. Reversing the perspective on nutrient limitation from “stimulation above ambient” to “decline below maximum” provides insights into both light and nutrient impacts on stream productivity.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology