Connor P. Horn, Christina Wicker, Antoni Wellisz, Cyrus Zeledon, Pavani Vamsi Krishna Nittala, F. Joseph Heremans, David D. Awschalom and Supratik Guha*,
{"title":"Controlled Spalling of 4H Silicon Carbide with Investigated Spin Coherence for Quantum Engineering Integration","authors":"Connor P. Horn, Christina Wicker, Antoni Wellisz, Cyrus Zeledon, Pavani Vamsi Krishna Nittala, F. Joseph Heremans, David D. Awschalom and Supratik Guha*, ","doi":"10.1021/acsnano.4c1097810.1021/acsnano.4c10978","DOIUrl":"https://doi.org/10.1021/acsnano.4c10978https://doi.org/10.1021/acsnano.4c10978","url":null,"abstract":"<p >We detail scientific and engineering advances which enable the controlled spalling and layer transfer of single crystal 4H silicon carbide (4H-SiC) from bulk substrates. 4H-SiC’s properties, including high thermal conductivity and a wide bandgap, make it an ideal semiconductor for power electronics. Moreover, 4H-SiC is an excellent host of solid-state atomic defect qubits for quantum computing and quantum networking. Because 4H-SiC substrates are expensive (due to long growth times and limited yield), techniques for removal and transfer of bulk-quality films are desirable for substrate reuse and integration of the separated films. In this work, we utilize updated approaches for stressor layer thickness control and spalling crack initiation to demonstrate controlled spalling of 4H-SiC, the highest fracture toughness crystal spalled to date. We achieve coherent spin control of neutral divacancy (VV<sup>0</sup>) qubit ensembles and measure a quasi-bulk spin T<sub>2</sub> of 79.7 μs in the spalled films.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 45","pages":"31381–31389 31381–31389"},"PeriodicalIF":15.8,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c10978","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142608966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sangho Lee, Xinyuan Zhang, Pooya Abdollahi, Matthew R. Barone, Chengye Dong, Young Jin Yoo, Min-Kyu Song, Doyoon Lee, Jung-El Ryu, Jun-Hui Choi, Jae-Hyun Lee, Joshua A. Robinson, Darrell G. Schlom, Hyun S. Kum, Celesta S. Chang*, Ambrose Seo* and Jeehwan Kim*,
{"title":"Route to Enhancing Remote Epitaxy of Perovskite Complex Oxide Thin Films","authors":"Sangho Lee, Xinyuan Zhang, Pooya Abdollahi, Matthew R. Barone, Chengye Dong, Young Jin Yoo, Min-Kyu Song, Doyoon Lee, Jung-El Ryu, Jun-Hui Choi, Jae-Hyun Lee, Joshua A. Robinson, Darrell G. Schlom, Hyun S. Kum, Celesta S. Chang*, Ambrose Seo* and Jeehwan Kim*, ","doi":"10.1021/acsnano.4c0944510.1021/acsnano.4c09445","DOIUrl":"https://doi.org/10.1021/acsnano.4c09445https://doi.org/10.1021/acsnano.4c09445","url":null,"abstract":"<p >Remote epitaxy is taking center stage in creating freestanding complex oxide thin films with high crystallinity that could serve as an ideal building block for stacking artificial heterostructures with distinctive functionalities. However, there exist technical challenges, particularly in the remote epitaxy of perovskite oxides associated with their harsh growth environments, making the graphene interlayer difficult to survive. Transferred graphene, typically used for creating a remote epitaxy template, poses limitations in ensuring the yield of perovskite films, especially when pulsed laser deposition (PLD) growth is carried out, since graphene degradation can be easily observed. Here, we employ spectroscopic ellipsometry to determine the critical factors that damage the integrity of graphene during PLD by tracking the change in optical properties of graphene <i>in situ</i>. To mitigate the issues observed in the PLD process, we propose an alternative growth strategy based on molecular beam epitaxy to produce single-crystalline perovskite membranes.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 45","pages":"31225–31233 31225–31233"},"PeriodicalIF":15.8,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142608727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-Assembled Controllable Cu-Based Perovskite/Calcium Oxide Hybrids with Strong Interfacial Interactions for Enhanced CH4 Electrosynthesis","authors":"Yu Zhang, Yunze Xu, Zitao Chen, Zhenbao Zhang, Xiangjian Liu, Zhen Xue, Xuezeng Tian, Xuedong Bai, Xue Wang, Minghua Huang, Jiawei Zhu*, Heqing Jiang and Yongfa Zhu, ","doi":"10.1021/acsnano.4c1145910.1021/acsnano.4c11459","DOIUrl":"https://doi.org/10.1021/acsnano.4c11459https://doi.org/10.1021/acsnano.4c11459","url":null,"abstract":"<p >Cu-based perovskite oxide catalysts show promise for CO<sub>2</sub> electromethanation, but suffer from unsatisfactory CH<sub>4</sub> selectivity and poor stability. Here, we report self-assembled, controllable Cu-based perovskite/calcium oxide hybrids with strongly interacting interfaces for high-performance CH<sub>4</sub> electrosynthesis. As proof-of-concept catalysts, the La<sub>2</sub>CuO<sub>4</sub>/(CaO)<i><sub>x</sub></i> (<i>x</i> from 0.2 to 1.2) series has tunable CaO phase concentrations and thus controllable interface sizes. The La<sub>2</sub>CuO<sub>4</sub> and CaO components are intimately connected at the interface, leading to strong interfacial interactions mainly manifested by marked electron transfer from Ca<sup>2+</sup> to Cu<sup>2+</sup>. In CH<sub>4</sub> electrosynthesis, their activity and selectivity show a volcano-type dependence on the CaO phase concentrations and are positively correlated with the interface sizes. Among them, the La<sub>2</sub>CuO<sub>4</sub>/(CaO)<sub>0.8</sub> delivers the optimal activity and selectivity for CH<sub>4</sub>, together with good stability, much better than those of a physical-mixture counterpart and most reported Cu-based perovskite oxides. Moreover, La<sub>2</sub>CuO<sub>4</sub>/(CaO)<sub>0.8</sub> stands out as one of the most effective Cu-based catalysts for CH<sub>4</sub> electrosynthesis, achieving a high CH<sub>4</sub> selectivity of 77.6% at 300 mA cm<sup>–2</sup>. Our experiments and theoretical calculations highlight the significant role of self-assembly-induced strong interfacial interactions in promoting *CO adsorption/hydrogenation, intensifying resistance to structural degradation, and consequently underpinning the achievement of such optimized performance.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 45","pages":"31466–31477 31466–31477"},"PeriodicalIF":15.8,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142608962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adam Erickson, Qihan Zhang, Hamed Vakili, Chaozhong Li, Suchit Sarin, Suvechhya Lamichhane, Lanxin Jia, Ilja Fescenko, Edward Schwartz, Sy-Hwang Liou, Jeffrey E. Shield, Guozhi Chai, Alexey A. Kovalev, Jingsheng Chen* and Abdelghani Laraoui*,
{"title":"Room Temperature Magnetic Skyrmions in Gradient-Composition Engineered CoPt Single Layers","authors":"Adam Erickson, Qihan Zhang, Hamed Vakili, Chaozhong Li, Suchit Sarin, Suvechhya Lamichhane, Lanxin Jia, Ilja Fescenko, Edward Schwartz, Sy-Hwang Liou, Jeffrey E. Shield, Guozhi Chai, Alexey A. Kovalev, Jingsheng Chen* and Abdelghani Laraoui*, ","doi":"10.1021/acsnano.4c1014510.1021/acsnano.4c10145","DOIUrl":"https://doi.org/10.1021/acsnano.4c10145https://doi.org/10.1021/acsnano.4c10145","url":null,"abstract":"<p >Topologically protected magnetic skyrmions in magnetic materials are stabilized by an interfacial or bulk Dzyaloshinskii–Moriya interaction (DMI). Interfacial DMI decays with an increase of the magnetic layer thickness in just a few nanometers, and bulk DMI typically stabilizes magnetic skyrmions at low temperatures. Consequently, more flexibility in the manipulation of DMI is required for utilizing nanoscale skyrmions in energy-efficient memory and logic devices at room temperature (RT). Here, we demonstrate the observation of RT skyrmions stabilized by gradient DMI (g-DMI) in composition gradient-engineered CoPt single-layer films by employing the topological Hall effect, magnetic force microscopy, and nitrogen-vacancy scanning magnetometry. Skyrmions remain stable over a wide range of applied magnetic fields and are confirmed to be nearly Bloch-type from micromagnetic simulation and analytical magnetization reconstruction. Furthermore, we observe skyrmion pairs, which may be explained by skyrmion–antiskyrmion interactions. Our findings expand the family of magnetic materials hosting RT magnetic skyrmions by tuning g-DMI via gradient polarity and a choice of magnetic elements.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 45","pages":"31261–31273 31261–31273"},"PeriodicalIF":15.8,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142608964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weike Chen, Sijie Xian, Bernice Webber, Emily L. DeWolf, Connor R. Schmidt, Rory Kilmer, Dongping Liu, Elizabeth M. Power and Matthew J. Webber*,
{"title":"Engineering Supramolecular Nanofiber Depots from a Glucagon-Like Peptide-1 Therapeutic","authors":"Weike Chen, Sijie Xian, Bernice Webber, Emily L. DeWolf, Connor R. Schmidt, Rory Kilmer, Dongping Liu, Elizabeth M. Power and Matthew J. Webber*, ","doi":"10.1021/acsnano.4c1024810.1021/acsnano.4c10248","DOIUrl":"https://doi.org/10.1021/acsnano.4c10248https://doi.org/10.1021/acsnano.4c10248","url":null,"abstract":"<p >Diabetes and obesity have emerged as major global health concerns. Glucagon-like peptide-1 (GLP-1), a natural incretin hormone, stimulates insulin production and suppresses glucagon secretion to stabilize and reduce blood glucose levels and control appetite. The therapeutic use of GLP-1 receptor agonists (e.g., semaglutide) has transformed the standard of care in recent years for treating type 2 diabetes and reversing obesity. The native GLP-1 sequence has a very short half-life, and therapeutic advances have come from molecular engineering to alter the pharmacokinetic profile of synthetic GLP-1 receptor agonists to enable once-weekly administration, reduce the frequency of injection, and improve adherence. Efforts to further extend this profile would offer additional convenience or enable entirely different treatment modalities. Here, an injectable GLP-1 receptor agonist depot is engineered through integration of a prosthetic self-assembling peptide motif to enable supramolecular nanofiber formation and hydrogelation. This supramolecular GLP-1 receptor agonistic (PA-GLP1) offers sustained release in vitro for multiple weeks, supporting long-lasting therapy. Moreover, in a rat model of type 2 diabetes, a single injection of the supramolecular PA-GLP1 formulation achieved sustained serum concentrations for at least 40 days, with an overall reduction in blood glucose levels and reduced weight gain, comparing favorably to daily injections of semaglutide. The general and modular approach is also extensible to other next-generation peptide therapies. Accordingly, the formation of supramolecular nanofiber depots offers a more convenient and long-lasting therapeutic option to manage diabetes and treat metabolic disorders.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 45","pages":"31274–31285 31274–31285"},"PeriodicalIF":15.8,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142608778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient Energy Transfer Enabled by Dark States in van der Waals Heterostructures","authors":"Ziyu Luo, Xiao Yi, Ying Jiang, Nannan Luo, Bingjie Liu, Yangguang Zhong, Qin Tan, Qi Jiang, Xinfeng Liu, Shula Chen*, Yuerui Lu* and Anlian Pan*, ","doi":"10.1021/acsnano.4c0940310.1021/acsnano.4c09403","DOIUrl":"https://doi.org/10.1021/acsnano.4c09403https://doi.org/10.1021/acsnano.4c09403","url":null,"abstract":"<p >Dark exciton states show great potential in condensed matter physics and optoelectronics because of their long lifetime and rich distribution in band structures. Therefore, they can theoretically serve as efficient energy reservoirs, providing a platform for future applications. However, their optical-transition-forbidden nature severely limits their experimental exploration and hinders their current application. Here, we demonstrate a universal dark state nonlinear energy transfer (ET) mechanism in monolayer WS<sub>2</sub>/CsPbBr<sub>3</sub> van der Waals heterostructures under two-photon excitation, which successfully utilizes the enormous energy reserved in the dark exciton state of CsPbBr<sub>3</sub> to significantly improve the photoelectric performance of monolayer WS<sub>2</sub>. We first propose the scenario of resonant ET between the dark state of CsPbBr<sub>3</sub> and WS<sub>2</sub>, and then reveal that this is a typical Förster resonant ET and belongs to the 2D-2D category. Interestingly, the dark state ET in CsPbBr<sub>3</sub> is identified as a long-range donor–bridge–acceptor hopping mode, with a potential distance exceeding 200 nm. Finally, we successfully achieve nearly an order of magnitude enhancement in the near-infrared detection performance of monolayer WS<sub>2</sub>. Our results enrich the theory of dark exciton states and ET, and they provide a way of using dark exciton states for future practical applications.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 45","pages":"31215–31224 31215–31224"},"PeriodicalIF":15.8,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142608963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph A. Hlevyack, Sahand Najafzadeh, Yao Li, Tsubaki Nagashima, Akifumi Mine, Yigui Zhong, Takeshi Suzuki, Akiko Fukushima, Meng-Kai Lin, Soorya Suresh Babu, Jinwoong Hwang, Ji-Eun Lee, Sung-Kwan Mo, James N. Eckstein, Shik Shin, Kozo Okazaki* and Tai-Chang Chiang*,
{"title":"Uniform Diffusion of Cooper Pairing Mediated by Hole Carriers in Topological Sb2Te3/Nb","authors":"Joseph A. Hlevyack, Sahand Najafzadeh, Yao Li, Tsubaki Nagashima, Akifumi Mine, Yigui Zhong, Takeshi Suzuki, Akiko Fukushima, Meng-Kai Lin, Soorya Suresh Babu, Jinwoong Hwang, Ji-Eun Lee, Sung-Kwan Mo, James N. Eckstein, Shik Shin, Kozo Okazaki* and Tai-Chang Chiang*, ","doi":"10.1021/acsnano.4c1053310.1021/acsnano.4c10533","DOIUrl":"https://doi.org/10.1021/acsnano.4c10533https://doi.org/10.1021/acsnano.4c10533","url":null,"abstract":"<p >Spin-helical Dirac Fermions at a doped topological insulator’s boundaries can support Majorana quasiparticles when coupled with <i>s</i>-wave superconductors, but in <i>n</i>-doped systems, the requisite induced Cooper pairing in topological states is often buried at heterointerfaces or complicated by degenerate coupling with bulk conduction carriers. Rarely probed are <i>p</i>-doped topological structures with nondegenerate Dirac and bulk valence bands at the Fermi level, which may foster long-range superconductivity without sacrificing Majorana physics. Using ultrahigh-resolution photoemission, we report proximity pairing with a large decay length in <i>p</i>-doped topological Sb<sub>2</sub>Te<sub>3</sub> on superconducting Nb. Despite no momentum-space degeneracy, the topological and bulk states of Sb<sub>2</sub>Te<sub>3</sub>/Nb exhibit the same isotropic superconducting gaps at low temperatures. Our results unify principles for realizing accessible pairing in Dirac Fermions relevant to topological superconductivity.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 45","pages":"31323–31331 31323–31331"},"PeriodicalIF":15.8,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142608965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zijin Luo, Yi Lin, Yanan Meng, Mengyao Li, Hongyu Ren, Haoping Shi, Qiang Cheng* and Tuo Wei*,
{"title":"Spleen-Targeted mRNA Vaccine Doped with Manganese Adjuvant for Robust Anticancer Immunity In Vivo","authors":"Zijin Luo, Yi Lin, Yanan Meng, Mengyao Li, Hongyu Ren, Haoping Shi, Qiang Cheng* and Tuo Wei*, ","doi":"10.1021/acsnano.4c0990210.1021/acsnano.4c09902","DOIUrl":"https://doi.org/10.1021/acsnano.4c09902https://doi.org/10.1021/acsnano.4c09902","url":null,"abstract":"<p >The successful application of mRNA vaccines in preventing and treating infectious diseases highlights their potential as therapeutic vaccines for cancer treatment. However, unlike infectious diseases, effective antitumor therapy, particularly for solid tumors, necessitates the activation of more powerful cellular and humoral immunity to achieve clinical efficacy. Here, we report a spleen-targeted mRNA vaccine (Mn@mRNA-LNP) designed to deliver tumor antigen-encoding mRNA and manganese adjuvant (Mn<sup>2+</sup>) simultaneously to dendritic cells (DCs) in the spleen. This delivery system promotes DC maturation and surface antigen presentation and stimulates the production of cytotoxic T cells. Additionally, Mn<sup>2+</sup> codelivered in the system serves as a safe and effective immune adjuvant, activating the stimulator of interferon genes (STING) signaling pathway and promoting the secretion of type I interferon, further enhancing the antigen-specific T cell responses. Mn@mRNA-LNP effectively inhibits tumor progression in established melanoma and colon tumor models as well as in a model of tumor recurrence after resection. Notably, the combination of Mn@mRNA-LNP with immune checkpoint inhibitors further enhances complete tumor suppression and prolonged the overall survival in mice. Overall, this “All-in-One” mRNA vaccine significantly boosts antitumor immunity responses by improving spleen targeting and immune activation, providing an attractive strategy for the future clinical translation of therapeutic mRNA vaccines.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30701–30715 30701–30715"},"PeriodicalIF":15.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jixi Zeng, Jing Wang, Jinzhao Wang, Jia Li, Jiwen Chen, Feng Wei, Jing Zhang, Weijie Song* and Xi Fan*,
{"title":"Flexible Narrow Bandgap Sn–Pb Perovskite Solar Cells with 21% Efficiency Using N,N′-Carbonyldiimidazole Treatments","authors":"Jixi Zeng, Jing Wang, Jinzhao Wang, Jia Li, Jiwen Chen, Feng Wei, Jing Zhang, Weijie Song* and Xi Fan*, ","doi":"10.1021/acsnano.4c1103610.1021/acsnano.4c11036","DOIUrl":"https://doi.org/10.1021/acsnano.4c11036https://doi.org/10.1021/acsnano.4c11036","url":null,"abstract":"<p >Flexible tin–lead (Sn–Pb) mixed perovskite solar cells (PSCs) are among the promising flexible photovoltaics, owing to the narrow bandgap (NBG) of Sn–Pb perovskites, flexible and wearable features, and their role as a critical component in all-perovskite tandem photovoltaics. However, the flexible Sn–Pb PSCs suffer from a low power conversion efficiency, no higher than 18.5%, along with limited stability. Herein, we reported an efficient and stable flexible NBG Sn–Pb PSC via an <i>N</i>,<i>N</i>′-carbonyldiimidazole (CDI) passivation strategy. CDI, with strong adsorption energy, preferentially binds to Sn<sup>2+</sup> compared with oxygen (O<sub>2</sub>), thus effectively inhibiting the adsorption of O<sub>2</sub> on perovskite surfaces. The transfer of electron density around Sn<sup>2+</sup> dramatically decreased, thus suppressing Sn<sup>2+</sup> oxidation. The CDI treatments endowed the Sn–Pb mixed films with fewer defects, improved crystallinity, better morphology, and matched energy-level alignment. The flexible Sn–Pb devices exhibited a high PCE of 21.02%. Besides, the devices showed enhanced stability and promoted flexibility. This work provides a pathway to visibly increase the efficiency and stability of the flexible Sn–Pb mixed photovoltaic cells.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 45","pages":"31390–31400 31390–31400"},"PeriodicalIF":15.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adva Raz, Hila Gubi, Adam Cohen and Fernando Patolsky*,
{"title":"Transdermal Minimally Invasive Optical Multiplex Detection of Protein Biomarkers by Nanopillars Array-Embedded Microneedles","authors":"Adva Raz, Hila Gubi, Adam Cohen and Fernando Patolsky*, ","doi":"10.1021/acsnano.4c1161210.1021/acsnano.4c11612","DOIUrl":"https://doi.org/10.1021/acsnano.4c11612https://doi.org/10.1021/acsnano.4c11612","url":null,"abstract":"<p >Biomarkers detection has become essential in medical diagnostics and early detection of life-threatening diseases. Modern-day medicine relies heavily on painful and invasive tests, with the extraction of large volumes of venous blood being the most common tool of biomarker detection. These tests are time-consuming, complex, expensive and require multiple sample manipulations and trained staff. The application of “intradermal” biosensors utilizing microneedles as minimally invasive sensing elements for capillary blood biomarkers detection has gained extensive interest in the past few years as a central point-of-care (POC) detection platform. Herein, we present a diagnosis paradigm based on vertically aligned nanopillar array-embedded microneedles sampling-and-detection elements for the direct optical detection and quantification of biomarkers in capillary blood. We present here a demonstration of the simple fabrication route for the creation of a multidetection-zone silicon nanopillar array, embedded in microneedle elements, followed by their area-selective chemical modification, toward the multiplex intradermal biomarkers detection. The utilization of the rapid and specific antibody–antigen binding, combined with the intrinsically large sensing area created by the nanopillar array, enables the simultaneous efficient ultrafast and highly sensitive intradermal capillary blood sampling and detection of protein biomarkers of clinical relevance, without requiring the extraction of blood samples for the <i>ex vivo</i> biomarkers analysis. Through preliminary <i>in vitro</i> and <i>in vivo</i> experiments, the direct intradermal in-skin blood extraction-free platform has demonstrated excellent sensitivity (low pM) and specificity for the accurate multiplex detection of protein biomarkers in capillary blood.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"18 44","pages":"30848–30862 30848–30862"},"PeriodicalIF":15.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c11612","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}