Journal of Fourier Analysis and Applications最新文献

筛选
英文 中文
Correction to: On Harmonic Hilbert Spaces on Compact Abelian Groups 修正:紧阿贝尔群上的调和希尔伯特空间
3区 数学
Journal of Fourier Analysis and Applications Pub Date : 2023-10-17 DOI: 10.1007/s00041-023-10043-1
Suddhasattwa Das, Dimitrios Giannakis, Michael R. Montgomery
{"title":"Correction to: On Harmonic Hilbert Spaces on Compact Abelian Groups","authors":"Suddhasattwa Das, Dimitrios Giannakis, Michael R. Montgomery","doi":"10.1007/s00041-023-10043-1","DOIUrl":"https://doi.org/10.1007/s00041-023-10043-1","url":null,"abstract":"","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"276 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135993911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The General Theory of Superoscillations and Supershifts in Several Variables 若干变量的超振荡和超移的一般理论
3区 数学
Journal of Fourier Analysis and Applications Pub Date : 2023-10-17 DOI: 10.1007/s00041-023-10048-w
F. Colombo, S. Pinton, I. Sabadini, D. C. Struppa
{"title":"The General Theory of Superoscillations and Supershifts in Several Variables","authors":"F. Colombo, S. Pinton, I. Sabadini, D. C. Struppa","doi":"10.1007/s00041-023-10048-w","DOIUrl":"https://doi.org/10.1007/s00041-023-10048-w","url":null,"abstract":"Abstract In this paper we describe a general method to generate superoscillatory functions of several variables starting from a superoscillating sequence of one variable. Our results are based on the study of suitable infinite order differential operators acting on holomorphic functions with growth conditions of exponential type. Additional constraints are required when dealing with infinite order differential operators whose symbol is a function that is holomorphic in some open set, but not necessarily entire. The results proved for superoscillating sequences in several variables are extended to sequences of supershifts in several variables.","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135994637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On Eigenmeasures Under Fourier Transform 傅里叶变换下的特征测度
3区 数学
Journal of Fourier Analysis and Applications Pub Date : 2023-10-01 DOI: 10.1007/s00041-023-10045-z
Michael Baake, Timo Spindeler, Nicolae Strungaru
{"title":"On Eigenmeasures Under Fourier Transform","authors":"Michael Baake, Timo Spindeler, Nicolae Strungaru","doi":"10.1007/s00041-023-10045-z","DOIUrl":"https://doi.org/10.1007/s00041-023-10045-z","url":null,"abstract":"Abstract Several classes of tempered measures are characterised that are eigenmeasures of the Fourier transform, the latter viewed as a linear operator on (generally unbounded) Radon measures on $$mathbb {R}hspace{0.5pt}^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:msup> <mml:mspace /> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> . In particular, we classify all periodic eigenmeasures on $$mathbb {R}hspace{0.5pt}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:mspace /> </mml:mrow> </mml:math> , which gives an interesting connection with the discrete Fourier transform and its eigenvectors, as well as all eigenmeasures on $$mathbb {R}hspace{0.5pt}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:mspace /> </mml:mrow> </mml:math> with uniformly discrete support. An interesting subclass of the latter emerges from the classic cut and project method for aperiodic Meyer sets. Finally, we construct a large class of eigenmeasures with locally finite support that is not uniformly discrete and has large gaps around 0.","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136119560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat Equations and Wavelets on Mumford Curves and Their Finite Quotients Mumford曲线及其有限商上的热方程和小波
3区 数学
Journal of Fourier Analysis and Applications Pub Date : 2023-10-01 DOI: 10.1007/s00041-023-10046-y
Patrick Erik Bradley
{"title":"Heat Equations and Wavelets on Mumford Curves and Their Finite Quotients","authors":"Patrick Erik Bradley","doi":"10.1007/s00041-023-10046-y","DOIUrl":"https://doi.org/10.1007/s00041-023-10046-y","url":null,"abstract":"Abstract A class of heat operators over non-archimedean local fields acting on $$L_2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:math> -function spaces on holed discs in the local field are developed and seen as being operators previously introduced by Zúñiga-Galindo, and if the underlying trees are regular, they are associated here with certain finite Kronecker product graphs. $$L_2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:math> -spaces and integral operators invariant under the action of a finite group acting on a holed disc are studied, and then applied to Mumford curves. It is found that the spectral gap in families of Mumford curves can become arbitrarily small.","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"151 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135407675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Fractional Leibniz Rules in the Setting of Quasi-Banach Function Spaces 拟banach函数空间集合中的分数阶Leibniz规则
3区 数学
Journal of Fourier Analysis and Applications Pub Date : 2023-10-01 DOI: 10.1007/s00041-023-10044-0
Elizabeth Hale, Virginia Naibo
{"title":"Fractional Leibniz Rules in the Setting of Quasi-Banach Function Spaces","authors":"Elizabeth Hale, Virginia Naibo","doi":"10.1007/s00041-023-10044-0","DOIUrl":"https://doi.org/10.1007/s00041-023-10044-0","url":null,"abstract":"","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135662905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bilinear Bochner–Riesz Square Function and Applications 双线性Bochner-Riesz平方函数及其应用
3区 数学
Journal of Fourier Analysis and Applications Pub Date : 2023-10-01 DOI: 10.1007/s00041-023-10049-9
Surjeet Singh Choudhary, K. Jotsaroop, Saurabh Shrivastava, Kalachand Shuin
{"title":"Bilinear Bochner–Riesz Square Function and Applications","authors":"Surjeet Singh Choudhary, K. Jotsaroop, Saurabh Shrivastava, Kalachand Shuin","doi":"10.1007/s00041-023-10049-9","DOIUrl":"https://doi.org/10.1007/s00041-023-10049-9","url":null,"abstract":"","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136119573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refined Decay Estimate and Analyticity of Solutions to the Linear Heat Equation in Homogeneous Besov Spaces 齐次Besov空间线性热方程解的精细衰减估计和解析性
3区 数学
Journal of Fourier Analysis and Applications Pub Date : 2023-09-22 DOI: 10.1007/s00041-023-10042-2
Tohru Ozawa, Taiki Takeuchi
{"title":"Refined Decay Estimate and Analyticity of Solutions to the Linear Heat Equation in Homogeneous Besov Spaces","authors":"Tohru Ozawa, Taiki Takeuchi","doi":"10.1007/s00041-023-10042-2","DOIUrl":"https://doi.org/10.1007/s00041-023-10042-2","url":null,"abstract":"Abstract The heat semigroup $${T(t)}_{t ge 0}$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;{&lt;/mml:mo&gt; &lt;mml:mi&gt;T&lt;/mml:mi&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;t&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mo&gt;}&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;t&lt;/mml:mi&gt; &lt;mml:mo&gt;≥&lt;/mml:mo&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; defined on homogeneous Besov spaces $$dot{B}_{p,q}^s(mathbb {R}^n)$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:msubsup&gt; &lt;mml:mover&gt; &lt;mml:mi&gt;B&lt;/mml:mi&gt; &lt;mml:mo&gt;˙&lt;/mml:mo&gt; &lt;/mml:mover&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mi&gt;q&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;s&lt;/mml:mi&gt; &lt;/mml:msubsup&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:msup&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;R&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msup&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; is considered. We show the decay estimate of $$T(t)f in dot{B}_{p,1}^{s+sigma }(mathbb {R}^n)$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;T&lt;/mml:mi&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;t&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;mml:mo&gt;∈&lt;/mml:mo&gt; &lt;mml:msubsup&gt; &lt;mml:mover&gt; &lt;mml:mi&gt;B&lt;/mml:mi&gt; &lt;mml:mo&gt;˙&lt;/mml:mo&gt; &lt;/mml:mover&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;s&lt;/mml:mi&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:mi&gt;σ&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msubsup&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:msup&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;R&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msup&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; for $$f in dot{B}_{p,infty }^s(mathbb {R}^n)$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;mml:mo&gt;∈&lt;/mml:mo&gt; &lt;mml:msubsup&gt; &lt;mml:mover&gt; &lt;mml:mi&gt;B&lt;/mml:mi&gt; &lt;mml:mo&gt;˙&lt;/mml:mo&gt; &lt;/mml:mover&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mi&gt;∞&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;s&lt;/mml:mi&gt; &lt;/mml:msubsup&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:msup&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;R&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msup&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; with an explicit bound depending only on the regularity index $$sigma &gt;0$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;σ&lt;/mml:mi&gt; &lt;mml:mo&gt;&gt;&lt;/mml:mo&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; and space dimension n . It may be regarded as a refined result compared with that of the second author (Takeuchi in Partial Differ Equ Appl Math 4 :100174, 2021). As a result of the refined decay estimate, we also improve a lower bound estimate of the radius of convergence of the Taylor expansion of $$T(cdot )f$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;T&lt;/mml:mi&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mo&gt;·&lt;/mml:mo&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; in space and time. To refine the previous results, we show explicit pointwise estimates of higher order derivatives of the power function $$|xi |^{sig","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136015751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-Dimensional Hardy–Littlewood Theorem for Functions with General Monotone Fourier Coefficients 一般单调傅里叶系数函数的二维Hardy-Littlewood定理
3区 数学
Journal of Fourier Analysis and Applications Pub Date : 2023-09-19 DOI: 10.1007/s00041-023-10039-x
Kristina Oganesyan
{"title":"Two-Dimensional Hardy–Littlewood Theorem for Functions with General Monotone Fourier Coefficients","authors":"Kristina Oganesyan","doi":"10.1007/s00041-023-10039-x","DOIUrl":"https://doi.org/10.1007/s00041-023-10039-x","url":null,"abstract":"Abstract We prove the Hardy–Littlewood theorem in two dimensions for functions whose Fourier coefficients obey general monotonicity conditions and, importantly, are not necessarily positive. The sharpness of the result is given by a counterexample, which shows that if one slightly extends the considered class of coefficients, the Hardy–Littlewood relation fails.","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"88 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135059297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endpoint Entropy Fefferman–Stein Bounds for Commutators 换向子的端点熵Fefferman-Stein边界
3区 数学
Journal of Fourier Analysis and Applications Pub Date : 2023-09-15 DOI: 10.1007/s00041-023-10040-4
Pamela A. Muller, Israel P. Rivera-Ríos
{"title":"Endpoint Entropy Fefferman–Stein Bounds for Commutators","authors":"Pamela A. Muller, Israel P. Rivera-Ríos","doi":"10.1007/s00041-023-10040-4","DOIUrl":"https://doi.org/10.1007/s00041-023-10040-4","url":null,"abstract":"Abstract In this paper endpoint entropy Fefferman–Stein bounds for Calderón–Zygmund operators introduced by Rahm (J Math Anal Appl 504(1):Paper No. 125372, 2021) are extended to iterated Coifman–Rochberg–Weiss commutators.","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"136 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135394387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bernstein–Jackson Inequalities on Gaussian Hilbert Spaces 高斯希尔伯特空间上的Bernstein-Jackson不等式
3区 数学
Journal of Fourier Analysis and Applications Pub Date : 2023-09-12 DOI: 10.1007/s00041-023-10035-1
Oleh Lopushansky
{"title":"Bernstein–Jackson Inequalities on Gaussian Hilbert Spaces","authors":"Oleh Lopushansky","doi":"10.1007/s00041-023-10035-1","DOIUrl":"https://doi.org/10.1007/s00041-023-10035-1","url":null,"abstract":"Abstract Estimates of best approximations by exponential type analytic functions in Gaussian random variables with respect to the Malliavin derivative in the form of Bernstein–Jackson inequalities with exact constants are established. Formulas for constants are expressed through basic parameters of approximation spaces. The relationship between approximation Gaussian Hilbert spaces and classic Besov spaces are shown.","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135878108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信