{"title":"一般单调傅里叶系数函数的二维Hardy-Littlewood定理","authors":"Kristina Oganesyan","doi":"10.1007/s00041-023-10039-x","DOIUrl":null,"url":null,"abstract":"Abstract We prove the Hardy–Littlewood theorem in two dimensions for functions whose Fourier coefficients obey general monotonicity conditions and, importantly, are not necessarily positive. The sharpness of the result is given by a counterexample, which shows that if one slightly extends the considered class of coefficients, the Hardy–Littlewood relation fails.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional Hardy–Littlewood Theorem for Functions with General Monotone Fourier Coefficients\",\"authors\":\"Kristina Oganesyan\",\"doi\":\"10.1007/s00041-023-10039-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove the Hardy–Littlewood theorem in two dimensions for functions whose Fourier coefficients obey general monotonicity conditions and, importantly, are not necessarily positive. The sharpness of the result is given by a counterexample, which shows that if one slightly extends the considered class of coefficients, the Hardy–Littlewood relation fails.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00041-023-10039-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00041-023-10039-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Two-Dimensional Hardy–Littlewood Theorem for Functions with General Monotone Fourier Coefficients
Abstract We prove the Hardy–Littlewood theorem in two dimensions for functions whose Fourier coefficients obey general monotonicity conditions and, importantly, are not necessarily positive. The sharpness of the result is given by a counterexample, which shows that if one slightly extends the considered class of coefficients, the Hardy–Littlewood relation fails.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.