傅里叶变换下的特征测度

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Michael Baake, Timo Spindeler, Nicolae Strungaru
{"title":"傅里叶变换下的特征测度","authors":"Michael Baake, Timo Spindeler, Nicolae Strungaru","doi":"10.1007/s00041-023-10045-z","DOIUrl":null,"url":null,"abstract":"Abstract Several classes of tempered measures are characterised that are eigenmeasures of the Fourier transform, the latter viewed as a linear operator on (generally unbounded) Radon measures on $$\\mathbb {R}\\hspace{0.5pt}^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:msup> <mml:mspace /> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> . In particular, we classify all periodic eigenmeasures on $$\\mathbb {R}\\hspace{0.5pt}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:mspace /> </mml:mrow> </mml:math> , which gives an interesting connection with the discrete Fourier transform and its eigenvectors, as well as all eigenmeasures on $$\\mathbb {R}\\hspace{0.5pt}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:mspace /> </mml:mrow> </mml:math> with uniformly discrete support. An interesting subclass of the latter emerges from the classic cut and project method for aperiodic Meyer sets. Finally, we construct a large class of eigenmeasures with locally finite support that is not uniformly discrete and has large gaps around 0.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Eigenmeasures Under Fourier Transform\",\"authors\":\"Michael Baake, Timo Spindeler, Nicolae Strungaru\",\"doi\":\"10.1007/s00041-023-10045-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Several classes of tempered measures are characterised that are eigenmeasures of the Fourier transform, the latter viewed as a linear operator on (generally unbounded) Radon measures on $$\\\\mathbb {R}\\\\hspace{0.5pt}^d$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:msup> <mml:mspace /> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> . In particular, we classify all periodic eigenmeasures on $$\\\\mathbb {R}\\\\hspace{0.5pt}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:mspace /> </mml:mrow> </mml:math> , which gives an interesting connection with the discrete Fourier transform and its eigenvectors, as well as all eigenmeasures on $$\\\\mathbb {R}\\\\hspace{0.5pt}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:mspace /> </mml:mrow> </mml:math> with uniformly discrete support. An interesting subclass of the latter emerges from the classic cut and project method for aperiodic Meyer sets. Finally, we construct a large class of eigenmeasures with locally finite support that is not uniformly discrete and has large gaps around 0.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00041-023-10045-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00041-023-10045-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文描述了几类调质测度,它们是傅里叶变换的特征测度,后者被看作是$$\mathbb {R}\hspace{0.5pt}^d$$ R d上Radon测度(通常是无界的)的线性算子。特别地,我们对$$\mathbb {R}\hspace{0.5pt}$$ R上的所有周期特征测度进行了分类,它给出了与离散傅里叶变换及其特征向量的有趣联系,以及具有一致离散支持的$$\mathbb {R}\hspace{0.5pt}$$ R上的所有特征测度。后者的一个有趣的子类出现在非周期Meyer集的经典切割和投影方法中。最后,我们构造了一大类具有局部有限支持的特征测度,它不是一致离散的,并且在0附近有很大的间隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Eigenmeasures Under Fourier Transform

On Eigenmeasures Under Fourier Transform
Abstract Several classes of tempered measures are characterised that are eigenmeasures of the Fourier transform, the latter viewed as a linear operator on (generally unbounded) Radon measures on $$\mathbb {R}\hspace{0.5pt}^d$$ R d . In particular, we classify all periodic eigenmeasures on $$\mathbb {R}\hspace{0.5pt}$$ R , which gives an interesting connection with the discrete Fourier transform and its eigenvectors, as well as all eigenmeasures on $$\mathbb {R}\hspace{0.5pt}$$ R with uniformly discrete support. An interesting subclass of the latter emerges from the classic cut and project method for aperiodic Meyer sets. Finally, we construct a large class of eigenmeasures with locally finite support that is not uniformly discrete and has large gaps around 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信