Long Geng, Yabo Yan, Yitong Cao, Guo Li, Changhui Liu
{"title":"Urea-aided phase change thermal energy storage performance regulation for thermal management","authors":"Long Geng, Yabo Yan, Yitong Cao, Guo Li, Changhui Liu","doi":"10.1016/j.est.2024.114678","DOIUrl":"10.1016/j.est.2024.114678","url":null,"abstract":"<div><div>Organic phase change cold storage materials show significant potential in various fields, including cold chain transportation, food and drug preservation, and battery thermal management. However, most organic phase change cold storage materials struggle with issues like difficult temperature control and flammability, which severely limit their application and development. In this study, by physically blending a modulated urea solution and alcohol with the polyethylene glycol lauryl ester (PLE), and adjusting the mass of urea and alcohol, a series of samples are prepared. Detailed characterization and analysis reveal that the prepared phase change materials (PCMs) possess excellent cold storage properties. These materials achieve precise control of melting temperatures ranging from −13.42 to −3.80 °C, with a maximum latent heat of melting of 85.12 J/g. Interestingly, this study reveals that seven groups of samples exhibit flame retardant effects. These properties are critical for enhancing the safety and efficiency of the materials in practical applications. This innovative approach not only addresses the temperature control and flammability issues but also expands the potential use of PCMs in various industries. Therefore, this study offers an effective method for developing advanced phase change cold storage materials, contributing to technological advancements in thermal management.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114678"},"PeriodicalIF":8.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenshuang Tian, Xiong Zheng, Yang Xiao, Guangzhao Qin
{"title":"A novel photovoltaic-thermoelectric hybrid system with an anisotropic shape-stale phase change composites","authors":"Wenshuang Tian, Xiong Zheng, Yang Xiao, Guangzhao Qin","doi":"10.1016/j.est.2024.114676","DOIUrl":"10.1016/j.est.2024.114676","url":null,"abstract":"<div><div>Photovoltaic (PV) power generation technology is currently one of the most effective ways in solar energy utilization, while current PV panels are facing a serious issue of electrical efficiency reduction and potential structural damage caused by the accumulated heat during operation. To solve this issue, we proposed a novel hybrid system containing PV cell, thermoelectric generation (TEG) module, and phase change composite (PCC), which can achieve a power enhancement of 29.8 % compared with individual PV cell. The fabricated chitosan-based PCC has a high anisotropy degree of 4.10 and melting enthalpy of 133.2 kJ·kg<sup>−1</sup>, which promote the effective heat transport and storage between PV cell and TEG module, and the excellent mechanical strength and thermal stability ensures its long-term endurance. Owing to excellent thermal properties of the PCC, not only the power of PV cell is increased by 55.9 mW, but the TEG module also continuously outputs 4.1 mW of power. Besides, the hybrid system can produce 5.185 kW·h·m<sup>−2</sup> electricity per day in the actual environment. Looking ahead, the integration of advanced materials and hybrid systems like the PV + PCC + TEG approach holds great promise for further enhancing solar energy efficiency and sustainability in real-world applications.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114676"},"PeriodicalIF":8.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunhua Zhu, Yayi Lu, Yanan Li, Hao Wang, Fan Zhang, Yongbing Jin, Bowen Cheng, Nanping Deng, Weimin Kang
{"title":"Multifunctional cu-Cu3P heterojunction embedded in hierarchically porous carbon nanofibers to strengthen adsorption and catalytic effects based on built-in electric field for liS cell","authors":"Chunhua Zhu, Yayi Lu, Yanan Li, Hao Wang, Fan Zhang, Yongbing Jin, Bowen Cheng, Nanping Deng, Weimin Kang","doi":"10.1016/j.est.2024.114638","DOIUrl":"10.1016/j.est.2024.114638","url":null,"abstract":"<div><div>Lithium sulfur batteries (LSBs) are considered a highly promising next-generation battery system. However, severe shuttle effect and slow redox kinetics of lithium polysulfides (LiPSs) in LSBs are still the main obstacles hindering their rapid developments. In this study, the multifunctional Cu-Cu<sub>3</sub>P heterojunction nanoparticles embedded in hierarchically porous carbon nanofibers (PCNFs) are designed and prepared for modifying separator of LSBs. The highly conductive metal Cu and PCNFs can synergistically enhance the conductivity of electrons and ions, and physically suppress “shuttle effect” of lithium LiPSs. Meanwhile, based on the spontaneous built-in electric field at the formed heterogeneous interfaces of Cu-Cu<sub>3</sub>P, the heterojunction also can chemically adsorb LiPSs and greatly catalyze conversion of LiPSs, thus further suppressing the “shuttle effect” and excellent reaction kinetics of LiPSs. Based on these merits, the assembled LSBs using the heterojunction Cu-Cu<sub>3</sub>P@PCNFs modified separator show outstanding initial specific discharge capacities up to 1009.2 mAh g<sup>−1</sup> at 1C and 998.5 mAh g<sup>−1</sup> at 2C, and stable cycling with an average capacity decay rate of 0.067 % and 0.084 % at 1C during 800 cycles and at 2C during 580 cycles, respectively. Even at a high sulfur loading of 2.5 mg cm<sup>−2</sup>, an excellent specific discharge capacity of 784.6 mAh g<sup>−1</sup> after 180 cycles 0.5C still can be realized. The work provides a novel perspective on understanding adsorption and catalytic design in energy storage equipment based on heterojunction engineering and built-in electric field.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114638"},"PeriodicalIF":8.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nickel foam supported CuO/Co3O4/r-GO is used as electrode material for non-enzymatic glucose sensors and high performance supercapacitors","authors":"Bairui Tao , Xiaoyan Feng , Fengjuan Miao","doi":"10.1016/j.est.2024.114603","DOIUrl":"10.1016/j.est.2024.114603","url":null,"abstract":"<div><div>In order to solve the problem of glucose detection in medical development and meet the urgent demand for new energy storage devices, this paper proposes a new material suitable for glucose sensing and capacitive properties. The sensor was fabricated by depositing Co<sub>3</sub>O<sub>4</sub> nanoparticles onto nickel foam with integrated r-GO via the hydrothermal method, followed by the synthesis of CuO nanoparticles using electroplating. The detection range of the sensor is 0.3–11.3 mM. The sensor's sensitivity is 1000.3 μA mM<sup>−1</sup> cm<sup>−2</sup>, indicating its responsiveness to changes in analyte concentration. In electrochemical test systems, Signal-to-Noise Ratio (SNR) usually represents the relative intensity of the effective current signal and the background noise, reflecting the accuracy and reliability of the measurement. When the SNR is three, the minimum detection limit is 0.431 μM, highlighting its ability to reliably detect analytes at low concentrations amidst background noise. According to electrochemical workstation tests, the sensor demonstrates robust stability. Furthermore, the electrode material proves suitable for asymmetric supercapacitor devices, when the current density is 2 Ag<sup>−1</sup>, the specific capacitance is 660.5 Fg<sup>−1</sup>. At the same time, we also explore the cyclic stability of the device, which can retain 92.3 % of its initial specific capacitance after 5000 cycles, showing its remarkable long-term stability. In addition, the prepared nanocomposites can also light the red LED light. The results show that the synthesized CuO/Co<sub>3</sub>O<sub>4</sub>/r-GO/NF electrode can be used for electrochemical glucose sensing and supercapacitors, and plays an important role as a multi-functional material in the fields of medical, food, electronics, transportation and energy, providing key technical support for a variety of applications.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114603"},"PeriodicalIF":8.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sugar gourd-like amorphous carbon coated CoS/Co9S8 nanoparticles anchored on carbon nanotubes for potassium-ion batteries","authors":"Yue Liu, Zhigang Liu","doi":"10.1016/j.est.2024.114641","DOIUrl":"10.1016/j.est.2024.114641","url":null,"abstract":"<div><div>Transition metal sulfides (TMSs) with high theoretical capacity have been recognized as potential anode materials for potassium ion batteries (PIBs). However, TMSs undergo strong volume changes during charge/discharge, which can be solved by combining with carbon materials and rational structural design. Herein, sugar gourd-like amorphous carbon coated CoS/Co<sub>9</sub>S<sub>8</sub> nanoparticles anchored on carbon nanotubes (CoS/Co<sub>9</sub>S<sub>8</sub>/CNTs-C) are prepared by constructing novel nanostructures. The amorphous carbon-coated layer as the “sugar coating” acts as a fixation to mitigate the volume expansion and agglomeration of the CoS/Co<sub>9</sub>S<sub>8</sub> nanoparticles, while the carbon nanotubes as a support provide a robust framework that enhances conductivity, resulting in composites with strong structural stability and outstanding electrochemical performance. With the benefit of the unique sugar gourd-like structure, the CoS/Co<sub>9</sub>S<sub>8</sub>/CNTs-C-0.2 composites exhibit favorable cycling stability at 100 mA g<sup>−1</sup> with 331.7 mAh g<sup>−1</sup> after 500 cycles and impressive rate performance (653.7 mAh g<sup>−1</sup> at 50 mA g<sup>−1</sup> and 367.9 mAh g<sup>−1</sup> at 2000 mA g<sup>−1</sup>). Moreover, density functional theory calculations indicate that the improved electrochemical reaction kinetics of CoS/Co<sub>9</sub>S<sub>8</sub>/CNTs-C comes from the stronger adsorption energy for K<sup>+</sup>. Furthermore, CoS/Co<sub>9</sub>S<sub>8</sub>/CNTs-C-0.2 exhibits favorable electrochemical performance in full cells, which proved the significance of its practical applications.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114641"},"PeriodicalIF":8.9,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multifunctional benzoselenadiazole-capped organic molecule-based nanohybrid for efficient asymmetric supercapacitor and oxygen evolution reaction","authors":"Devraj Singh , Lalita Wagh , Apurba K. Das","doi":"10.1016/j.est.2024.114604","DOIUrl":"10.1016/j.est.2024.114604","url":null,"abstract":"<div><div>Nanostructured hybrid materials have attracted significant interest in the field of energy storage and conversion. To investigate the effect of all nanohybrids on electrochemical properties, we have synthesized organic-inorganic nanohybrids through in situ galvanostatic electrodeposition using a monometallic and bimetallic composition of nickel, cobalt salts and an organic molecule. The electrochemical studies reveal that BSeFY/NCDH (20:20) (BSe = benzo[2,1,3]selenadiazole, F = <span>L</span>-phenylalanine and Y = <span>L</span>-tyrosine; NCDH = nickel‑cobalt double hydroxide) hybrid electrode performs more efficiently than 40:0, 0:40, 10:30, 30:10 and nickel‑cobalt double hydroxide-20:20 (NCDH-20:20) electrodes. The specific capacitance of the 20:20 hybrid electrode is measured to be 1338.46 F/g at 2 A/g current density. The AC/NF negative electrode was made using activated carbon, carbon black and polyvinylidene fluoride (PVDF) in a ratio of 80:15:5. The fabricated asymmetric device reveals the energy density of 35.48 Wh/kg at a power density 751.36 W/kg. Furthermore, the device exhibits a capacitance retention of 91.24 % after 5000 cycles at 7 A/g current density. This fabricated device has the ability to illuminate a red LED and operate a small fan. Furthermore, the designed and fabricated hybrid materials are highly efficient for the oxygen evolution reaction (OER). Among the fabricated materials, the 20:20 hybrid electrode is highly active and achieves a lower overpotential of 240 mV with a low Tafel slope of 62 mV/dec at a current density of 10 mA/cm<sup>2</sup>. Furthermore, the BSeFY/NCDH (20,20) hybrid is highly robust and shows negligible activity loss after 55 h of chronopotentiometry measurement at 10 mA/cm<sup>2</sup> current density. Furthermore, multistep chronopotentiometry was performed in the current density range of 4 to 40 mA/cm<sup>2</sup> and the results exhibit that the potential rapidly levels off in the next 400 s due to the robust electrochemical stability, rapid mass and electron transportation ability of 20:20 nanohybrid. Therefore, the electrochemical investigations demonstrate that the bimetallic organic-inorganic nanohybrid is highly active in supercapacitor and OER due to its abundant electrochemical active sites, high conductivity, enhanced Faradaic redox properties, multiple valence transitions and the easy synergistic effect between metal ions and organic moiety.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114604"},"PeriodicalIF":8.9,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alisa R. Bogdanova, Filipp A. Obrezkov, Eldar M. Khabushev, Xiangze Kong, Tanja Kallio
{"title":"Binder-free LiNi0.8Mn0.1Co0.1O2 electrode enabled by single-walled carbon nanotube coating for Li-ion batteries","authors":"Alisa R. Bogdanova, Filipp A. Obrezkov, Eldar M. Khabushev, Xiangze Kong, Tanja Kallio","doi":"10.1016/j.est.2024.114627","DOIUrl":"10.1016/j.est.2024.114627","url":null,"abstract":"<div><div>Herein, we report a solvent-free preparation procedure for a binder-free LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NCM811 or NMC811) positive electrode consisting of only 0.2 wt% single-walled carbon nanotubes (SWCNTs) and 99.8 wt% NCM811. SWCNTs form a three-dimensional conductive network within NCM811 particles, facilitating electron transfer across the NCM811 electrode, while maintaining high content of the active material. The binder-free NCM811-SWCNT electrode provides a high discharge specific capacity of ~190 mAh g<sup>−1</sup> at 0.2C current rate retaining 38 % more of the initial capacity than a conventional electrode after 200 charge-discharge cycles at 1C. Electrochemical techniques such as operando X-ray diffraction and dilatometry has been applied for the first time to gain a deeper understanding of binder-free electrode structure evolution induced by electrochemical transformations. The data obtained demonstrates a good agreement between macroscopic and microscopic parameters changes for a NCM-SWCNT electrode.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114627"},"PeriodicalIF":8.9,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huaijia Jing , Tao Chen , Wenqi Shao , Chen Ma, Rongyan Ji, Jin Zhang, Jing Hu, Qianqian Liu, Tao Wei, Ruirui Wang, Wanfei Li, Miao Cheng, Bo Liu
{"title":"Flexible electrospun porous carbon nanofiber@PEG phase change nanofibrous membrane for advanced solar-/electro-thermal energy conversion and storage","authors":"Huaijia Jing , Tao Chen , Wenqi Shao , Chen Ma, Rongyan Ji, Jin Zhang, Jing Hu, Qianqian Liu, Tao Wei, Ruirui Wang, Wanfei Li, Miao Cheng, Bo Liu","doi":"10.1016/j.est.2024.114608","DOIUrl":"10.1016/j.est.2024.114608","url":null,"abstract":"<div><div>Flexible phase change materials (PCMs) showed great application prospects in the field of thermal management of flexible electronic devices and wearable devices, nevertheless, their development was seriously hindered by the intrinsic solid rigidity, liquid leakage and lack of functionality of PCMs. Herein, a multifunctional flexible leakage-proof composite PCM (named PCNF@PEG) was fabricated, in which poly(ethylene glycol) (PEG) was encapsulated in robust flexible porous carbon nanofibers (PCNFs) derived from electrospun polyacrylonitrile/polystyrene (PAN/PS) composite nanofibers. The as-prepared PCNF@PEG showed excellent flexibility, shape stability, satisfactory phase change performance with melting/freezing latent heat of 71.9/70.9 J g<sup>−1</sup> and prominent thermal reliability after 100 thermal cycles. Moreover, the thermal conductivity of PCNF@PEG was noticeably enhanced by 45 % compared to pure PEG. Significantly, the interconnect carbon nanofiber matrix endowed PCNF@PEG unprecedented solar-/electro-thermal energy conversion performance and cycle stability. Therefore, the fabricated PCNF@PEG with pronounced comprehensive performance is a promising candidate for advanced thermal management applications in flexible devices.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114608"},"PeriodicalIF":8.9,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mei Luo , Aleksandar S. Mijailovic , Guanyi Wang , Qingliu Wu , Brian W. Sheldon , Wenquan Lu
{"title":"Understanding particle size effect on fast-charging behavior of graphite anode using ultra-thin-layer electrodes","authors":"Mei Luo , Aleksandar S. Mijailovic , Guanyi Wang , Qingliu Wu , Brian W. Sheldon , Wenquan Lu","doi":"10.1016/j.est.2024.114521","DOIUrl":"10.1016/j.est.2024.114521","url":null,"abstract":"<div><div>Extreme fast charging (≤15 min) of lithium-ion batteries is highly desirable to accelerate mass-market adoption of electric vehicles. However, significant capacity fading, as well as safety issues due to the lithium plating caused by the fast charging rate, limit its implementation. In this study, we investigated the fast-charging capability of graphite materials with various particle sizes. To eliminate the Li<sup>+</sup> ion concentration gradient effect across the thickness of the electrode, ultra-thin-layer graphite electrodes were developed to investigate the “real” fast-charging capability of graphite at the particle level. Electrochemical assessments as well as microscopic characterizations revealed that smaller particles exhibited superior fast-charging performance, featuring enhanced capacity reversibility, faster charging rate, and less lithium plating under the same fast-charging conditions. It is shown that small-particle graphite (mean radius of 3.3 μm) could withstand a 4C charge (to 80 % state-of-charge) without plating, with minimal plating occurring at 6C. Thicker particles exhibited plating at lower C-rates. Since the experimental data could not directly explain whether intra-particle diffusion limitations or interfacial reaction limitations dominated the plating mechanism, the pseudo-2-dimensional model was used to evaluate the most likely plating mechanism. The model suggested that particle-level diffusion is the dominant mechanism contributing to plating at high rates. This work provides comprehensive insights into the particle size effects on fast-charging capability, offering a better understanding of fast-charging behavior and valuable guidance for designing optimal electrode architecture for high-rate lithium-ion batteries.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114521"},"PeriodicalIF":8.9,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fangfang Zhao , Ruixian Tang , Liming Yu , Lei Ma , Liangming Wei
{"title":"Tween 80-assisted synthesis of high conductivity silicon‑carbon composites as anode materials for high-performance lithium-ion batteries","authors":"Fangfang Zhao , Ruixian Tang , Liming Yu , Lei Ma , Liangming Wei","doi":"10.1016/j.est.2024.114569","DOIUrl":"10.1016/j.est.2024.114569","url":null,"abstract":"<div><div>High-theoretical-capacity silicon anodes are critically hindered by huge volume expansion and poor conductivity. Silicon‑carbon composites can effectively enhance the electrode lifetime, but their preparation often suffers from particle aggregation issues. Here, the eco-friendly Tween 80 dispersant is introduced for the first time to assist in synthesizing Si/EG-C-TW80 submicron composites. The resulting Si/EG-C-TW80 exhibits well-dispersed and uniformly coated particles, effectively mitigating electrode expansion and maintaining structural stability. Meanwhile, the increased proportion of graphene-type carbon in the carbon layer effectively improves its conductivity. Batteries with the Si/EG-C-TW80 electrode demonstrate an excellent reversible capacity (1985.8 mAh g<sup>−1</sup> at 0.2 A g<sup>−1</sup>) and high rate capability (933 mAh g<sup>−1</sup> at 4 A g<sup>−1</sup>), in addition, deliver a high specific capacity of 566 mAh g<sup>−1</sup> after 500 cycles at 4 A g<sup>−1</sup>. Furthermore, the LFP||Si/EG-C-TW80 full cell shows superior specific discharge capacities of 140 mAh g<sup>−1</sup>. This easily scalable and environmentally friendly synthesis method offers great promise for the widespread application of silicon in energy storage systems.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114569"},"PeriodicalIF":8.9,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}