{"title":"Evaluation model of fabric transient cooling sensation based on multiple stepwise regression analysis","authors":"Xuemei Li, Shanghui Wang, Yanqing Li, Xiaoke Jin, Leilei Ma, W. Tian, Chengyan Zhu","doi":"10.1177/15589250221144014","DOIUrl":"https://doi.org/10.1177/15589250221144014","url":null,"abstract":"In this paper, according to the one-dimensional heat transfer mechanism between fabric and human body, it is found that different thermal properties affect different heat transfer stages of fabric. Therefore, we used the maximum heat flux qmax as the index to characterize the transient contact cool feeling of fabrics, and measured the thermal properties, various specifications and surface morphology of 40 kinds of summer fabrics. Firstly, we discussed the influence of the above properties on the transient cool feeling. Secondly, according to multivariate stepwise regression, the significant representative variables are selected, and the prediction model of transient coolness and fabric properties is established. Furthermore, the model was verified to explore the subjective and objective consistency. The results show that, in the transient heat transfer stage, the influencing factors that are significantly related to the cool feeling of fabric include fabric thickness, grammage, volumetric heat capacity, thermal conductivity, warp and weft density, and roughness. The main component representative variables of the cooling sensation regression equation are volumetric heat capacity and thickness, and other variables can be explained by these two variables. Changing them is the key to enhance the cooling sensation. The predicted value of coolness is in good agreement with the subjective evaluation of cooling sensation, which has a certain guiding effect on the actual human cool feeling. The purpose of this study is to find out the main factors that affect the cool feeling, and then apply the established cool feeling model to the development of fabrics in summer, so as to meet the thermal comfort requirements of human body’s fabrics.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44063687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Zhao, Tingyu Zhu, Li-Li Wei, Jumei Zhao, Qianwen Wang, Jun Wang
{"title":"Preparation and properties of PAN nanofiber membrane based on spiral spinning technology","authors":"Lei Zhao, Tingyu Zhu, Li-Li Wei, Jumei Zhao, Qianwen Wang, Jun Wang","doi":"10.1177/15589250231181740","DOIUrl":"https://doi.org/10.1177/15589250231181740","url":null,"abstract":"The PAN spinning solution was chosen as the spiral spinning research object. Laminar flow theory was used to straighten and align macromolecules, and spiral spinning needles were used to control the spiral twisting of straightened PAN macromolecules. The internal spiral arrangement of PAN nanofibers became more compact as the helix number of spinning needles increased. The TEM (transmission electron microscope) was used to photograph the motion trajectory of TiO2 (titanium dioxide) nanoparticles in nanofibers, which directly confirmed the feasibility of the spiral spinning principle. SEM (Scanning Electronic Microscopy) observations revealed that the appearance of the PAN nanofiber membranes changed to some extent under spiral physical technology. The analysis of the tensile and bursting properties of PAN nanofiber membranes demonstrated that the structure of the nanofibers changed significantly after spiral spinning. The pore structure, electrical resistance, and antibacterial properties of PAN nanofiber membrane all reached optimal values at the optimal helix number of spinning needle.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47354752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuai Liu, Xiaotao Ma, Yuntong Ma, Zijie Chen, Zhijia Dong, P. Ma
{"title":"Review on the design and application of concrete canvas reinforced with spacer fabric","authors":"Shuai Liu, Xiaotao Ma, Yuntong Ma, Zijie Chen, Zhijia Dong, P. Ma","doi":"10.1177/15589250231152591","DOIUrl":"https://doi.org/10.1177/15589250231152591","url":null,"abstract":"Concrete canvas reinforced with spacer fabric has increasingly gained popularity due to its lightweight, great flexibility, high strength and low contamination compared to ordinary concrete. In order to fully explore the structure and performance of this novel composite, this review illustrates how to design high-performance concrete canvas and presents a summary of recent application status of it. Firstly, the structure and properties of knitted and woven spacer fabric and concrete material that comprise concrete canvas is introduced. Secondly, internal and external mechanisms affecting the properties of concrete canvas have been described. To illustrate how to evaluate and test the mechanical behavior of concrete canvas, typical mechanical experiments such as tensile and flexural experiment and failure mechanisms are explained. In terms of the characteristics of concrete canvas, the present article reviews current applications of it in disaster relief tent, slope protection, ditch lining and furniture design areas. Nevertheless, its practical applications are still in the preliminary stage, it is of great necessity to expand its application from the point of view of replacing traditional materials, changing structural design, external reinforcement and perfecting performance evaluation system.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44583376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Punching path optimization method for warp-knitted vamp based on machine vision and improved ant colony algorithm","authors":"Xinfu Chi, Qi-Yao Li, Xiaowei Zhang, Hongxia Yan","doi":"10.1177/15589250221138909","DOIUrl":"https://doi.org/10.1177/15589250221138909","url":null,"abstract":"Aiming at the current problems of duplicated paths and low work efficiency in machine punching of warp knitted vamp marker points, this paper proposes a punching path planning method of machine vision combined with intelligent algorithms. The method can improve the timeliness of visual recognition of punching location by limiting the search area and similarity function threshold, and improve the ability of global search and adaptive adjustment in punching path planning by combining with the improved ant colony algorithm to calculate a more accurate and optimized path more efficiently. Through the visual recognition test and the simulation test of the improved ant colony algorithm, the results show that the template matching can correctly identify the positioning hole marker points for different styles, rotation directions and lighting conditions, and the recognition accuracy is 0.43 mm and the repeat positioning accuracy is 0.09 mm; meanwhile, the improved ant colony algorithm can effectively avoid the local optimal solution, which can improve the optimal rate of the result by about 38% and the algorithm can reduce the number of iterations of the optimal solution within 60 times, which greatly saves the calculation time of path planning. The method can be used to improve the efficiency of punching in the actual warp knit vamp punching.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47028199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Veeraprabahar Jawahar, Mohankumar Gabriel, S. Santhanam, S. Selvaraj
{"title":"Sustainable waste cotton and pigeon pea stalk fibers composite materials for acoustics and thermal properties","authors":"Veeraprabahar Jawahar, Mohankumar Gabriel, S. Santhanam, S. Selvaraj","doi":"10.1177/15589250231189814","DOIUrl":"https://doi.org/10.1177/15589250231189814","url":null,"abstract":"This study focuses on the development and characterization of pigeon pea stalk/cotton fibers mixed with a blend ratio of 50/50, 70/30, 30/70, 60/40, 100/0 waste cotton and 0/100 waste pea stalk composites are equipped with a compression molding system. The entire composite samples are tested for acoustics, thermal and physical parameters as per the American Society for Testing and Materials standard (ASTM). The sound absorption coefficients (SAC) were measured according to ASTME1050 by an impedance tube method, and the SAC over six frequencies 125, 250, 500, 1000, 2000, and 4000 Hz were calculated. The result revealed that the composite samples that are prepared from cotton/pigeon pea waste have confirmed more than 80% of the SAC and the waste composites provided the best insulation, sound absorption, moisture absorption, and fiber properties. The effect exposed that composites materials arranged from cotton/pea stalk waste fiber have established further than 75% by the sound immersion measure and the waste 28% composites handed the fashionable Appropriation, sound immersion, humidity immersion, and fiber materials. The waste cotton/pigeon pea stalk composite samples have satisfactory moisture resistance at high humidity situations without disturbing the insulation properties.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47290404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emulsification of castor oil using poly (N-vinyl-2-pyrrolidone) for functional finishing of cotton fabric","authors":"Hesham M Fahmy, A. A. Almetwally","doi":"10.1177/15589250231174613","DOIUrl":"https://doi.org/10.1177/15589250231174613","url":null,"abstract":"Castor oil (CAO)/poly (N-vinyl-2-pyrrolidone) (PVP) hybrid was synthesized at different reaction conditions including PVP/CAO weight ratio, temperature, and time. The results indicated that the optimum conditions to synthesis that hybrid is reacting of PVP having a molecular weight of 40,000 Da with CAO at a weight ratio of 30% and temperature of 150°C for 60 min. The synthesized hybrid was characterized via FTIR. Emulsification of such hybrid in water results in a white stable emulsion. The TEM analysis proved that the prepared emulsion of a particle size ranges from 320 to 370 nm. The technical feasibility to apply the produced emulsion for functional finishing of cotton fabric was studied. The results obtained indicated that treating cotton fabric with easy care finishing bath containing the synthesized emulsion results in enhancement in nitrogen content, tensile strength, whiteness index, stiffness, and antibacterial activities along with a decreasing in resiliency, wettability, and surface roughness properties of treated fabric, compared to the control sample. Moreover, incorporation of zinc oxide nano-particles (ZnO-NPs) or dihydroxybenzophenone (DHBP) in the above mentioned finishing bath enhances the functional properties of the finished fabric. Furthermore, dyeing fabric samples with different reactive and direct dyes followed by finishing using the aforementioned finishing bath, in absence of ZnO-NPs and DHBP, gives rise to an enhancement in the color strength of such samples compared to the dyed samples. The fastness to washing and perspiration of only the direct dye dyed/finished sample was improved. Almost all the dyed/finished samples exhibited an improvement in their fastness to the wet rubbing and alkaline perspiration along with a reduction in fastness to light. In addition, the SEM, as well as EDX analysis of treated fabric, was investigated.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42243968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhongxian Hu, Guifang He, Xuming Zhang, T. Huang, Hongxia Li, Yuhai Zhang, Dan Xie, Xiuzhuang Song, Xin Ning, Fanggang Ning
{"title":"Impact behavior of nylon kernmantle ropes for high-altitude fall protection","authors":"Zhongxian Hu, Guifang He, Xuming Zhang, T. Huang, Hongxia Li, Yuhai Zhang, Dan Xie, Xiuzhuang Song, Xin Ning, Fanggang Ning","doi":"10.1177/15589250231167401","DOIUrl":"https://doi.org/10.1177/15589250231167401","url":null,"abstract":"Aiming at the problem that the existing rope falling device can only detect the impact force and cannot synchronously detect the impact displacement, this paper introduces a large-range high-precision displacement sensor and constructs a rope impact force-displacement detection device. Taking the nylon kernmantle rope for high-altitude fall protection commonly used in aerial work and rock climbing as the research object, the impact response behavior of the rope when drop mass is dropped once and repeatedly is systematically studied, and the impact force and impact displacement are discussed. Further, the evolution of the elastic modulus of the rope is discussed and this could provide theoretical support for the design of the impact-resistant rope structure and the rope impact protection.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49407403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Kyzymchuk, L. Melnyk, A. Marmaralı, N. Oglakcioglu, G. Ertekin, Svitlana Arabuli, Arsenii Arabuli, Berna Cüreklibatır Encan
{"title":"The effect of weft yarn type and elastomer yarn threading on the properties of elastic warp knitted fabrics. Part 1: Structure and elasticity","authors":"O. Kyzymchuk, L. Melnyk, A. Marmaralı, N. Oglakcioglu, G. Ertekin, Svitlana Arabuli, Arsenii Arabuli, Berna Cüreklibatır Encan","doi":"10.1177/15589250231167405","DOIUrl":"https://doi.org/10.1177/15589250231167405","url":null,"abstract":"The demand for medical textile products is increasing with awareness regarding better healthcare services and efficient medical treatments. Compared to other textiles, elastic warp knitted materials, which have elastomer threads in each wale have been widely used in producing medical and preventive products. Thus, in order to decrease the weight and cost of these products without effect on fabric’s stretchability, in this study, various elastic warp knitted fabrics were produced using different raw materials and elastomer threading arrangements, and their properties were investigated. The fabrics were produced on a crochet knitting machine with five different arrangements of elastomer threading and four different laid-in yarn materials as polyester, cotton, and linen. Then the dimensional properties and elastic behaviors of the samples were determined and evaluated comparatively. Statistical analysis showed that all studied elastic warp knitted fabrics have high provide elasticity at a higher than 95% level. On the other hand, the mass per unit area of the fabric is reduced, with the use of linen yarn as weft yarn, or when the total linear density of the weft yarn and the amount of elastomer threads decrease. Finally, the obtained results revealed the possibility to reduce elastomer consumption to decrease weight for elastic medical products, which were developed, without effect on fabric’s stretchability and elasticity as well as replacing synthetic threads with natural yarns in order to improve product comfort.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48581358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evridiki Papachristou, Despoina Kalaitzi, V. Pissas
{"title":"A methodological framework for the integration of 3D virtual prototyping into the design development of laser-cut garments","authors":"Evridiki Papachristou, Despoina Kalaitzi, V. Pissas","doi":"10.1177/15589250231194621","DOIUrl":"https://doi.org/10.1177/15589250231194621","url":null,"abstract":"3D virtual prototyping for garment development, although not much exploited and appreciated by the clothing industry in the early days of its appearance two decades ago, has now been explored (research-wise) extensively especially in the pandemic period and its impact on the whole supply chain of garments and fashion products. This virtual prototype which allows the company to visualize the status and condition of a clothing product that may be thousands of kilometers away, providing insights into how products can be better designed, manufactured, operated and serviced before companies invest in physical prototypes and assets, is often called digital twin. At the same time, laser-cut as a creative design technique on clothing materials have emerged in recent times, as fashion moguls are seeing the benefits that the technology presents. Laser cut technology with its benefits of accuracy, speed, precision, applicability in various materials, flexibility in geometry, interoperability with other systems like CAD/CAM and CIM, sustainability in resources and source of inspiration for several upcoming designers, provides an excellent approach for creating bridges between the past, the present and the future in history of fashion design. The aim of this paper was to provide a decision-making framework for the selection of an effective digital twinning process with the use of two different 3D virtual prototyping tools. For this purpose, a methodological framework is proposed which guides the creator according to the final use of the digital garment twin: evaluation of actual fit and actual representation of the produced physical, or as a shared digital asset for an exclusive digital environment.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46736936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhoufeng Liu, Bo Tian, Chunlei Li, Xiao Li, Kaihua Wang
{"title":"A context-aware progressive attention aggregation network for fabric defect detection","authors":"Zhoufeng Liu, Bo Tian, Chunlei Li, Xiao Li, Kaihua Wang","doi":"10.1177/15589250231174612","DOIUrl":"https://doi.org/10.1177/15589250231174612","url":null,"abstract":"Fabric defect detection plays a critical role for measuring quality control in the textile manufacturing industry. Deep learning-based saliency models can quickly spot the most interesting regions that attract human attention from the complex background, which have been successfully applied in fabric defect detection. However, most of the previous methods mainly adopted multi-level feature aggregation yet ignored the complementary relationship among different features, and thus resulted in poor representation capability for the tiny and slender defects. To remedy these issues, we propose a novel saliency-based fabric defect detection network, which can exploit the complementary information between different layers to enhance the representation features ability and discrimination of defects. Specifically, a multi-scale feature aggregation unit (MFAU) is proposed to effectively characterize the multi-scale contextual features. Besides, a feature fusion refinement module (FFR) composed of an attention fusion unit (AFU) and an auxiliary refinement unit (ARU) is designed to exploit complementary important information and further refine the input features for enhancing the discriminative ability of defect features. Finally, a multi-level deep supervision (MDS) is adopted to guide the model to generate more accurate saliency maps. Under different evaluation metrics, our proposed method outperforms most state-of-the-art methods on our developed fabric datasets.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45875774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}