椰枣纤维增强硅酸盐水泥可持续隔热复合材料

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
Nadjoua Bellel, N. Bellel
{"title":"椰枣纤维增强硅酸盐水泥可持续隔热复合材料","authors":"Nadjoua Bellel, N. Bellel","doi":"10.1177/15589250231157718","DOIUrl":null,"url":null,"abstract":"In order to ensure thermal comfort and reduce energy consumption, a new composite based on Portland cement and date palm fiber was studied in this work. Our main objective is to study the possibility of integrating and using this new material as a thermal insulation material in the exterior coatings of buildings. Several composites were prepared for different weight concentrations (from 0% to 5%) of date palm fibers. The studied materials were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). In addition, the hot wire method was used to measure thermo-physical properties. The results show that the addition of fibers has no effect on the chemical composition of the matrix, as shown by FTIR and XRD analyzes which proves the chemical stability. The results of the TGA analysis indicate that the inclusion of date palm fibers has an effect on the thermal characteristics of the matrix. The SEM analysis shows that there is good adhesion between the Portland cement and the plant fibers used and that the date palm fibers are well incorporated into the matrix, the SEM images also showed that the inclusion of the fibers increases the porosity. In addition, the results showed that the addition of the fibers of date palm a marked decrease in thermal conductivity, which makes the material insulating. Thus, the use of fibers in cement seems to be a promising option that allows it to be applied as a thermal coating material in buildings.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable heat insulation composites based on Portland cement reinforced with date palm fibers\",\"authors\":\"Nadjoua Bellel, N. Bellel\",\"doi\":\"10.1177/15589250231157718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to ensure thermal comfort and reduce energy consumption, a new composite based on Portland cement and date palm fiber was studied in this work. Our main objective is to study the possibility of integrating and using this new material as a thermal insulation material in the exterior coatings of buildings. Several composites were prepared for different weight concentrations (from 0% to 5%) of date palm fibers. The studied materials were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). In addition, the hot wire method was used to measure thermo-physical properties. The results show that the addition of fibers has no effect on the chemical composition of the matrix, as shown by FTIR and XRD analyzes which proves the chemical stability. The results of the TGA analysis indicate that the inclusion of date palm fibers has an effect on the thermal characteristics of the matrix. The SEM analysis shows that there is good adhesion between the Portland cement and the plant fibers used and that the date palm fibers are well incorporated into the matrix, the SEM images also showed that the inclusion of the fibers increases the porosity. In addition, the results showed that the addition of the fibers of date palm a marked decrease in thermal conductivity, which makes the material insulating. Thus, the use of fibers in cement seems to be a promising option that allows it to be applied as a thermal coating material in buildings.\",\"PeriodicalId\":15718,\"journal\":{\"name\":\"Journal of Engineered Fibers and Fabrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineered Fibers and Fabrics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/15589250231157718\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineered Fibers and Fabrics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15589250231157718","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

摘要

为了保证热舒适性和降低能耗,本文研究了一种以硅酸盐水泥和椰枣纤维为基体的新型复合材料。我们的主要目标是研究将这种新材料整合并用作建筑外墙涂料隔热材料的可能性。针对不同重量浓度(从0%到5%)的椰枣纤维制备了几种复合材料。通过傅立叶变换红外光谱(FTIR)、X射线衍射(XRD)、热重分析(TGA)和扫描电子显微镜(SEM)对所研究的材料进行了分析。此外,还采用热线法测量了材料的热物理性能。FTIR和XRD分析表明,纤维的加入对基体的化学组成没有影响,证明了其化学稳定性。TGA分析结果表明,椰枣纤维的加入对基体的热性能有影响。SEM分析表明,硅酸盐水泥与所用植物纤维之间具有良好的粘附性,椰枣纤维很好地结合到基体中,SEM图像还表明,纤维的加入增加了孔隙率。此外,研究结果表明,椰枣纤维的加入显著降低了材料的导热系数,使材料具有绝缘性。因此,在水泥中使用纤维似乎是一种很有前途的选择,可以将其用作建筑中的热涂层材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sustainable heat insulation composites based on Portland cement reinforced with date palm fibers
In order to ensure thermal comfort and reduce energy consumption, a new composite based on Portland cement and date palm fiber was studied in this work. Our main objective is to study the possibility of integrating and using this new material as a thermal insulation material in the exterior coatings of buildings. Several composites were prepared for different weight concentrations (from 0% to 5%) of date palm fibers. The studied materials were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). In addition, the hot wire method was used to measure thermo-physical properties. The results show that the addition of fibers has no effect on the chemical composition of the matrix, as shown by FTIR and XRD analyzes which proves the chemical stability. The results of the TGA analysis indicate that the inclusion of date palm fibers has an effect on the thermal characteristics of the matrix. The SEM analysis shows that there is good adhesion between the Portland cement and the plant fibers used and that the date palm fibers are well incorporated into the matrix, the SEM images also showed that the inclusion of the fibers increases the porosity. In addition, the results showed that the addition of the fibers of date palm a marked decrease in thermal conductivity, which makes the material insulating. Thus, the use of fibers in cement seems to be a promising option that allows it to be applied as a thermal coating material in buildings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineered Fibers and Fabrics
Journal of Engineered Fibers and Fabrics 工程技术-材料科学:纺织
CiteScore
5.00
自引率
6.90%
发文量
41
审稿时长
4 months
期刊介绍: Journal of Engineered Fibers and Fabrics is a peer-reviewed, open access journal which aims to facilitate the rapid and wide dissemination of research in the engineering of textiles, clothing and fiber based structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信