Zhoufeng Liu, Bo Tian, Chunlei Li, Xiao Li, Kaihua Wang
{"title":"A context-aware progressive attention aggregation network for fabric defect detection","authors":"Zhoufeng Liu, Bo Tian, Chunlei Li, Xiao Li, Kaihua Wang","doi":"10.1177/15589250231174612","DOIUrl":"https://doi.org/10.1177/15589250231174612","url":null,"abstract":"Fabric defect detection plays a critical role for measuring quality control in the textile manufacturing industry. Deep learning-based saliency models can quickly spot the most interesting regions that attract human attention from the complex background, which have been successfully applied in fabric defect detection. However, most of the previous methods mainly adopted multi-level feature aggregation yet ignored the complementary relationship among different features, and thus resulted in poor representation capability for the tiny and slender defects. To remedy these issues, we propose a novel saliency-based fabric defect detection network, which can exploit the complementary information between different layers to enhance the representation features ability and discrimination of defects. Specifically, a multi-scale feature aggregation unit (MFAU) is proposed to effectively characterize the multi-scale contextual features. Besides, a feature fusion refinement module (FFR) composed of an attention fusion unit (AFU) and an auxiliary refinement unit (ARU) is designed to exploit complementary important information and further refine the input features for enhancing the discriminative ability of defect features. Finally, a multi-level deep supervision (MDS) is adopted to guide the model to generate more accurate saliency maps. Under different evaluation metrics, our proposed method outperforms most state-of-the-art methods on our developed fabric datasets.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45875774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Kyzymchuk, L. Melnyk, A. Marmaralı, N. Oglakcioglu, G. Ertekin, Svitlana Arabuli, Arsenii Arabuli, Berna Cüreklibatır Encan
{"title":"The effect of weft yarn type and elastomer yarn threading on the properties of elastic warp knitted fabrics. Part 1: Structure and elasticity","authors":"O. Kyzymchuk, L. Melnyk, A. Marmaralı, N. Oglakcioglu, G. Ertekin, Svitlana Arabuli, Arsenii Arabuli, Berna Cüreklibatır Encan","doi":"10.1177/15589250231167405","DOIUrl":"https://doi.org/10.1177/15589250231167405","url":null,"abstract":"The demand for medical textile products is increasing with awareness regarding better healthcare services and efficient medical treatments. Compared to other textiles, elastic warp knitted materials, which have elastomer threads in each wale have been widely used in producing medical and preventive products. Thus, in order to decrease the weight and cost of these products without effect on fabric’s stretchability, in this study, various elastic warp knitted fabrics were produced using different raw materials and elastomer threading arrangements, and their properties were investigated. The fabrics were produced on a crochet knitting machine with five different arrangements of elastomer threading and four different laid-in yarn materials as polyester, cotton, and linen. Then the dimensional properties and elastic behaviors of the samples were determined and evaluated comparatively. Statistical analysis showed that all studied elastic warp knitted fabrics have high provide elasticity at a higher than 95% level. On the other hand, the mass per unit area of the fabric is reduced, with the use of linen yarn as weft yarn, or when the total linear density of the weft yarn and the amount of elastomer threads decrease. Finally, the obtained results revealed the possibility to reduce elastomer consumption to decrease weight for elastic medical products, which were developed, without effect on fabric’s stretchability and elasticity as well as replacing synthetic threads with natural yarns in order to improve product comfort.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48581358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhongxian Hu, Guifang He, Xuming Zhang, T. Huang, Hongxia Li, Yuhai Zhang, Dan Xie, Xiuzhuang Song, Xin Ning, Fanggang Ning
{"title":"Impact behavior of nylon kernmantle ropes for high-altitude fall protection","authors":"Zhongxian Hu, Guifang He, Xuming Zhang, T. Huang, Hongxia Li, Yuhai Zhang, Dan Xie, Xiuzhuang Song, Xin Ning, Fanggang Ning","doi":"10.1177/15589250231167401","DOIUrl":"https://doi.org/10.1177/15589250231167401","url":null,"abstract":"Aiming at the problem that the existing rope falling device can only detect the impact force and cannot synchronously detect the impact displacement, this paper introduces a large-range high-precision displacement sensor and constructs a rope impact force-displacement detection device. Taking the nylon kernmantle rope for high-altitude fall protection commonly used in aerial work and rock climbing as the research object, the impact response behavior of the rope when drop mass is dropped once and repeatedly is systematically studied, and the impact force and impact displacement are discussed. Further, the evolution of the elastic modulus of the rope is discussed and this could provide theoretical support for the design of the impact-resistant rope structure and the rope impact protection.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49407403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evridiki Papachristou, Despoina Kalaitzi, V. Pissas
{"title":"A methodological framework for the integration of 3D virtual prototyping into the design development of laser-cut garments","authors":"Evridiki Papachristou, Despoina Kalaitzi, V. Pissas","doi":"10.1177/15589250231194621","DOIUrl":"https://doi.org/10.1177/15589250231194621","url":null,"abstract":"3D virtual prototyping for garment development, although not much exploited and appreciated by the clothing industry in the early days of its appearance two decades ago, has now been explored (research-wise) extensively especially in the pandemic period and its impact on the whole supply chain of garments and fashion products. This virtual prototype which allows the company to visualize the status and condition of a clothing product that may be thousands of kilometers away, providing insights into how products can be better designed, manufactured, operated and serviced before companies invest in physical prototypes and assets, is often called digital twin. At the same time, laser-cut as a creative design technique on clothing materials have emerged in recent times, as fashion moguls are seeing the benefits that the technology presents. Laser cut technology with its benefits of accuracy, speed, precision, applicability in various materials, flexibility in geometry, interoperability with other systems like CAD/CAM and CIM, sustainability in resources and source of inspiration for several upcoming designers, provides an excellent approach for creating bridges between the past, the present and the future in history of fashion design. The aim of this paper was to provide a decision-making framework for the selection of an effective digital twinning process with the use of two different 3D virtual prototyping tools. For this purpose, a methodological framework is proposed which guides the creator according to the final use of the digital garment twin: evaluation of actual fit and actual representation of the produced physical, or as a shared digital asset for an exclusive digital environment.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46736936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenshuo Zhu, Yuan Xue, Yourong Chen, Yaojun Wang, Huanqiang Shi
{"title":"Construction of grid color mixture model of seven primary-color and modified Stearns-Noechel color matching algorithm for color prediction of full-color-gamut rotor melange yarn","authors":"Wenshuo Zhu, Yuan Xue, Yourong Chen, Yaojun Wang, Huanqiang Shi","doi":"10.1177/15589250231198369","DOIUrl":"https://doi.org/10.1177/15589250231198369","url":null,"abstract":"In this paper, the full-color-gamut grid color mixture model containing 601 grid points is constructed by ternary double coupling blending of seven primary-color fibers, and the spinning method of full-color-gamut melange yarn is given by combining with three-channel NC rotor spinning technology. A modified S-N color prediction model was constructed by selecting 55 uniformly distributed grid points for yarn and fabric production from the full-color-gamut grid color mixture model as samples for solving the reflectance conversion coefficients. On this basis, the method of predicting the color value of a melange yarn based on its primary-color fiber composition and blending ratio and predicting the primary-color fiber composition and blending ratio based on the color value of a melange yarn using the parameters of the nearest sample grid point is proposed, and six samples with different blending ratios in six color mixing regions of the full-color-gamut grid color mixture model are designed for validation. The results showed that the average color difference between the predicted color and the actual color of the melange yarn is 1.15, the predicted primary-color fiber composition of the melange yarn is consistent with the actual composition, and the average error between the predicted blending ratio and the actual blending ratio is 3.95%. The method proposed in this paper can effectively predict the color value and blending ratio of melange yarn.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135443163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriela Maestri, L. B. Ferreira, Pedro Bachmann, Ana AM Paim, Claudia Merlini, F. Steffens
{"title":"Recent advances in piezoelectric textile materials: A brief literature review","authors":"Gabriela Maestri, L. B. Ferreira, Pedro Bachmann, Ana AM Paim, Claudia Merlini, F. Steffens","doi":"10.1177/15589250231151242","DOIUrl":"https://doi.org/10.1177/15589250231151242","url":null,"abstract":"Smart textiles (ST) can be defined as materials capable of detecting an external stimulus, responding, and adapting its behavior according to the stimulus obtained. The field of study and development of these materials is extensive, and ST can be seen in areas such as health, transport, security, civil construction, and sports. Piezoelectric textiles are part of the ST category and are characterized due the ability to generate electrical energy from mechanical stimulus, and vice versa. Therefore, the main objective of this review is to present the current research on piezoelectric ST. In addition, the study highlights the process of obtaining materials with piezoelectric properties and the challenges and limitations, seeking to understand the contribution of the development of these materials in the field of wearable electronic devices. Thus, the main challenge in developing piezoelectric textiles is in the ability to supply energy to electronic devices to be applied in various fields such as motion detection, acoustics, impact absorption, among others. Moreover, piezoelectric ST is remarkably promising for the development of wearable electronic textiles (e-textiles) that consequently impact the creation of new functional materials that enable renewable sources to offer a positive contribution in the daily society.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42639030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Constitutive model and experimental study of molded pulp material","authors":"Zhihang Li, Junjie Tang, Kuanmin Mao, Zhou Zhu","doi":"10.1177/15589250231181669","DOIUrl":"https://doi.org/10.1177/15589250231181669","url":null,"abstract":"Molded pulp products can improve the utilization of recycled paper by achieving close to zero waste emission and a 100% recycling rate, while satisfying the national goals for recycled packaging materials of various countries. Molded pulp products are often designed using finite-element simulations to optimize their performance, which requires the input of accurate material properties. However, studies on the constitutive model, an essential factor related to material properties, are still rare. This study investigated the mechanical behavior of the molded pulp material to simplify the parameters and improve the accuracy of the constitutive model. The fiber distribution and connection within the molded pulp material were investigated; treating the pores of the molded pulp as a virtual material enhances the meso-mechanical model and gives a transversely isotropic constitutive model. The elastic modulus in the thickness direction was calculated as 1.5997 MPa, and the experimentally measured value is 1.5368 MPa. The error of proposed model is 4.1%, but significantly smaller than treating molded pulp as an isotropic material, the error of which is ~80 times larger of experimental result.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42479739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huixian Zhang, H. Bai, Nan Wang, Q. Zhang, Qiang Fu
{"title":"The study of correlations among the process condition, structure and property for poly(l-lactide) fibers","authors":"Huixian Zhang, H. Bai, Nan Wang, Q. Zhang, Qiang Fu","doi":"10.1177/15589250221148850","DOIUrl":"https://doi.org/10.1177/15589250221148850","url":null,"abstract":"This article focus on derive the process-structure-property relationship of Poly(l-lactide) (PLLA) fibers prepared by two-step melt spinning process. The spinning temperature, spinning rate, drawing temperature as well as draw ratio were studied to analyze the influence of process variables on the structure and properties of PLLA fibers. It suggests that the crystallinity, lamellar orientation structure and mechanical properties of fibers are dependent on the spinning conditions, including melt-spinning and hot-drawing process. An approximate linear correlation resulted between the orientation degree and tensile strength of PLLA fibers, which means that the oriented structure plays a dominant role to enhance PLLA fibers. PLLA fibers with high performance of 499 MPa and 5.30 GPa in tensile strength and Young’s modulus separately have been realized by the selected spinning parameters. The results provide a theoretical direction for enhancing PLLA fibers by adjusting the structure characteristic via modifying the spinning parameters.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48422175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental study of structural characteristics, dimensional change in washing, non-creasing properties and air permeability of Swiss double piqué flax knit fabrics","authors":"Nadiia P Bukhonka","doi":"10.1177/15589250231181701","DOIUrl":"https://doi.org/10.1177/15589250231181701","url":null,"abstract":"The structural characteristics, dimensional change after four washing cycles, non-creasing properties and air permeability of Swiss double piqué knitted fabrics from cotton/flax (70% cotton, 30% flax), PAN/flax (70% PAN, 30% flax) and 100% flax yarns have been investigated. These knitted fabric samples of varying densities were produced on a 10 -gauge circular knitting machine. The results of investigation showed that the structural characteristics, dimensional change in washing, non-creasing properties and air permeability are highly dependent on the type of yarn used. Besides the type of yarn, the structural characteristics, such as the number of wales W and courses C per centimeter, fabric stitch density S, weight Ws, and fabric tightness K, are also influenced by the average loop length la. The weight Ws and thickness t of knitted fabrics are determined by the diameter of the yarn used. Usually, primary dimensional alterations of knitted fabrics of all yarn types occur after the first and second washing cycles. The non-creasing properties of the examined knitted fabrics are mainly affected by the type of yarn, rather than the average loop length la. Lastly, the air permeability AP of knitted fabrics is affected by the type of yarn, the average loop length la, and fabric density S.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43852109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chongchang Yang, Junping Zhang, Fei Li, He Ye, Yingcui Yang, Pei Feng
{"title":"Research on manufacturing of three component composite fiber with complex cross-section pattern","authors":"Chongchang Yang, Junping Zhang, Fei Li, He Ye, Yingcui Yang, Pei Feng","doi":"10.1177/15589250231157732","DOIUrl":"https://doi.org/10.1177/15589250231157732","url":null,"abstract":"In this work, a preparation method of three-component composite fibers with complex cross-sectional patterns is proposed, and the fibers with complex cross-sectional patterns are fabricated using melt spinning. Initially, inspired by the shape of a fishbone, a spinning pack with three-component melt channels is designed for spinning fibers with a fishbone cross-sectional pattern. Then, the numerical simulation of the melt flow in the channels of the spinning pack is performed using Polyflow software. The spinning pack structure is optimized by analyzing the flow velocity distribution and shear rate distribution of different components within the spinning pack channels. The results show that smaller velocity fluctuations contribute to the clarity of the cross-sectional pattern. Thereafter, the spinning experiments are carried out based on the optimized spinning pack. The effect of the flow ratio between the three components on the cross-sectional pattern is discussed, and the three-component composite fibers with a clear fishbone cross-sectional pattern is obtained. Finally, in order to further study the effectiveness of the complex cross-sectional pattern fiber preparation proposed in this paper, another spinning pack for fibers with an H-shaped cross-sectional pattern is designed according to the aforementioned method, and spinning experiments are carried out. The SEM images of the cross-sections of fibers with fishbone and H-shaped cross-sectional patterns are obtained, verifying the feasibility of the method proposed in this paper. Moreover, the fibers with complex cross-sectional patterns obtained by this method have a certain anti-counterfeiting effect and can also be blended with other yarns to obtain fabrics with anti-counterfeiting effects.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46911550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}