{"title":"Design and Characterization of Ultrasonic Langevin Transducer 20 kHz Using a Stepped Horn Front-Mass","authors":"Aisyah Nurul Khairiyah, Gandi Sugandi, Deddy Kurniadi","doi":"10.5614/j.eng.technol.sci.2023.55.4.1","DOIUrl":"https://doi.org/10.5614/j.eng.technol.sci.2023.55.4.1","url":null,"abstract":"Ultrasonication is a method that is widely used in various fields. One of its applications is to accelerate the process of homogenization, emulsification, and extraction. In the ultrasonicator system, the transducer is an extremely important device. The resonant frequency, longitudinal vibration amplitude, and electromechanical coupling are the targets in designing an ultrasonic transducer. In this investigation, the main contribution was the development of a simple and effective method for mechanically tuning the resonant frequency of the transducer by adding mass to the front end of the mass or stepped horn. This study also aimed to obtain optimal results by examining the effects of geometric dimensions, bolt prestress, stress distribution, resonant frequency, amplitude, and electrical impedance. The ultrasonic transducer model was designed with a resonant frequency of 20 kHz and simulated using the finite element analysis. The steps involved included calculating the dimensions and geometric structure of the transducer, modeling using the finite-element method, and experimental validation. The simulation results and measurements showed that the series resonant frequency, electrical impedance, and effective electromechanical coupling of the Model-4 transducer 16∙13 mm radiator configuration were 20.15 kHz, 100 Ω, and 0.2229 from the simulation results, and 20.17 kHz, 24.91 Ω, and 0.2033 from the measurement results. A percentage difference, or relative error, of 0.1% was obtained between the simulation and the experimental results for this Model-4 with bolt prestressing at 15 kN.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":"127 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134907452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shailesh Sonawane, Ravi Sekhar, Arundhati Warke, Sukrut Thipse, Chetan Varma
{"title":"Forecasting of Engine Performance for Gasoline-Ethanol Blends using Machine Learning","authors":"Shailesh Sonawane, Ravi Sekhar, Arundhati Warke, Sukrut Thipse, Chetan Varma","doi":"10.5614/j.eng.technol.sci.2023.55.3.10","DOIUrl":"https://doi.org/10.5614/j.eng.technol.sci.2023.55.3.10","url":null,"abstract":"The incorporation of alternative fuels in the automotive domain has brought a new paradigm to tackle the environmental and energy crises. Therefore, it is of interest to test and forecast engine performance with blended fuels. This paper presents an experimental study on gasoline-ethanol blends to test and forecast engine behavior due to changes in the fuel. This study employed a machine learning (ML) technique called TOPSIS to forecast the performance of a slightly higher blend fuelled engine based on experimental data obtained from the same engine running on 0% ethanol blend (E0) and E10 fuels under full load conditions. The engine performance predictions of this ML model were validated for 15% ethanol blend (E15) and further used to predict the engine performance of 20% ethanol blend fuel. The prediction R2 score for the ML model was found to be greater than 0.95 and the MAPE range was 1% to 5% for all observed engine performance attributes. Thus, this paper presents the potential of TOPSIS methodology-based ML predictions on blended fuel engine performance to shorten the testing efforts of blended fuel engines. This methodology may help to faster incorporate higher blended fuels in the automotive sector.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135153922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Laboratory Investigation of Micronized Lomashell Powder Effects on Asphalt Binder and Mix Performance","authors":"Alireza Roshan, Abbas Ghasemi","doi":"10.5614/j.eng.technol.sci.2023.55.3.9","DOIUrl":"https://doi.org/10.5614/j.eng.technol.sci.2023.55.3.9","url":null,"abstract":"Lomashell, a mineral stone derived from oyster shells and skeletons, is widely available in Iran and across the globe. Typically used for livestock feed due to its high calcium content, its production generates a considerable amount of discarded fine grains. This research focused on incorporating micronized Lomashell as additive for asphalt pavement to enhance performance and environmental sustainability. The impact of this powder on the rheological and physical properties of two common asphalt binders was evaluated. Moisture resistance, rutting, and permanent deformation of Lomashell-enhanced asphalt mixtures were also examined. The results indicate significant improvements in rheological properties and dynamic shear rheometer parameters upon Lomashell addition. Moisture sensitivity was enhanced, as demonstrated by the indirect tensile strength test. Adding 7% of this material to the asphalt mixture enhanced indirect tensile strength by 12% compared to control. Furthermore, utilizing the Hamburg wheel-tracking device (HWTD), it was observed that inclusion of this powder enhanced resistance against permanent deformation, as evidenced by the rutting resistance index (RRD) values. Effective high-speed shear mixing is emphasized for binder modification, as revealed by scanning electron microscopy analysis. These findings highlight Lomashell’s positive influence on the overall performance and durability of the asphalt mixtures, reducing rutting and enhancing resistance against permanent deformation. Utilizing this powder as asphalt additive holds promise for improving functionality and addressing environmental concerns, contributing to sustainable infrastructure development.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135154810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonas Kristanto, Muhammad Mufti Azis, Suryo Purwono
{"title":"Numerical Solution of nth Order DAEM for Kinetic Study of Lignocellulosic Biomass Pyrolysis","authors":"Jonas Kristanto, Muhammad Mufti Azis, Suryo Purwono","doi":"10.5614/j.eng.technol.sci.2023.55.3.4","DOIUrl":"https://doi.org/10.5614/j.eng.technol.sci.2023.55.3.4","url":null,"abstract":"The aim of the present study was to explore the most optimal configuration to numerically solve Distributed Activation Energy Models (DAEMs). DAEMs are useful in obtaining the kinetic parameters in non-isothermal kinetic studies using a thermogravimetry analyzer (TGA). Compared to other kinetic models, DAEMs provide an additional kinetic parameter that quantifies the extent of the reaction (σ) for each reaction’s mean activation energy (E ̅). Although DAEMs are efficacious in kinetic studies, solving DAEMs numerically is challenging. The DAEM equation includes double integration with respect to activation energy and temperature, which involves various numerical discretizations. Previously, many researchers utilized a DAEM to explicate complex reactions such as lignocellulosic biomass pyrolysis. However, most of them have yet to propose a numerical approach to solve DAEMs. Therefore, by exploring multiple numerical calculation configurations, here we present a general structure to numerically solve nth order and first-order DAEMs. The exploration includes determining the optimal integration limit of activation energy and the discretization of activation energy and temperature integration. From the investigation, we came up with a configuration that limits the integration of activation energy from E ̅-3σ to E ̅+3σ. Meanwhile, the number of integration points for temperature and activation energy must be 51 and 21, respectively. By using this configuration, DAEM can be utilized optimally in kinetic studies.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":"382 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135989891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Faris Ridwan Maulana, Ridho Kresna Wattimena, Budi Sulistianto
{"title":"Integrated D-InSAR and Ground-based Radar for Open Pit Slope Stability Monitoring and Implications for Rock Mass Young’s Modulus Reduction","authors":"Faris Ridwan Maulana, Ridho Kresna Wattimena, Budi Sulistianto","doi":"10.5614/j.eng.technol.sci.2023.55.3.3","DOIUrl":"https://doi.org/10.5614/j.eng.technol.sci.2023.55.3.3","url":null,"abstract":"Excavation and material stockpiling activities in the mining process cause a change in the distribution of forces and stresses in the material. As a result, the material will seek a new equilibrium by releasing the load through a landslide. As part of mitigation, it is necessary to monitor displacements occurring on slopes using high-accuracy devices. Ground-based radar is a technique considered to have good ability to detect displacements in real-time. However, ground-based radar has a weakness in that it cannot detect vertical displacement. One of the emerging technologies that is used for monitoring vertical displacements as LoS displacements is D-InSAR analysis. With the integration of both methods, displacements that occur horizontally and vertically on a slope can be detected properly. In addition, the decrease in rock mass strength due to displacement can be predicted based on numerical analysis using the finite element method. Monitoring was carried out from December 10th, 2021 to April 9th, 2022. The monitoring results from the beginning to the end of the period showed that the horizontal and vertical displacements that occurred in the low wall area were 1247.34 mm and 292.5 mm, respectively. Correlated with these conditions, the Young’s modulus value of the rock mass decreased between 3% and 35%.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135991270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of Crash Energy Management of the First-Developed High-Speed Train in Indonesia","authors":"Karisma Rizal, Achmad Syaifudin","doi":"10.5614/j.eng.technol.sci.2023.55.3.2","DOIUrl":"https://doi.org/10.5614/j.eng.technol.sci.2023.55.3.2","url":null,"abstract":"Crash energy management is an essential evaluation stage of passive safety systems for high-speed trains. As a part of crash energy management, crash energy absorption has been researched for the last decade. The development of its components has also been performed individually. This paper presents a numerical analysis of the configuration of an energy absorption system for high-speed trains developed in Indonesia. Three placement configurations of the energy absorption system were investigated using explicit dynamic analysis in ANSYS. Total energy absorption, deceleration pulse, and deformation length were considered in the evaluation of the numerical analysis results. The collision criteria used in this study were according to EN 15227 and CFR 238 standards. This study revealed that the existing design could fulfill the energy absorption and average deceleration pulse required by EN 15227. Nevertheless, the existing design could not fulfill the energy absorption and maximum deceleration pulse required by CFR 238. It was also indicated that by positioning the anti-climber slightly forward, changing the deformation force of the crush box, and adding an impactor, the quality of energy absorption and average deceleration pulse could be improved.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135991269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin Darmasetiawan, Prayatni Soewondo, Suprihanto Notodarmodjo, Dion Awfa
{"title":"Effect of Sonication Frequency and Power Intensity on the Disruption of Algal Cells: Under Vacuum and Non-Vacuum Conditions","authors":"Martin Darmasetiawan, Prayatni Soewondo, Suprihanto Notodarmodjo, Dion Awfa","doi":"10.5614/j.eng.technol.sci.2023.55.3.8","DOIUrl":"https://doi.org/10.5614/j.eng.technol.sci.2023.55.3.8","url":null,"abstract":"The presence of algae caused by anthropogenic eutrophication in water has become a severe environmental issue. Various treatment options for algae removal have been developed, such as filtration, coagulation, sedimentation, flotation, algicides, ozone, and photolysis. However, these technologies are complex, expensive, consume considerable amounts of various chemicals, and may cause further pollution (i.e., by-product formation). Ultrasonic exposure is an alternative method for removing algae from water that is environmentally friendly (i.e., no addition of chemicals) and almost unaffected by any turbidity in the water. In this study, process optimization of ultrasonication (e.g., by adjusting frequency, power intensity, and exposure time) for the removal of alga was tested under vacuum and non-vacuum conditions. Experiments were conducted on a batch of algae solution in a clear glass tube ultrasonicated by a 20 kHz transducer for 180 minutes. The tube was depressurized up to -67 N/m2 in a depressurizing chamber. The data was collected at transducer depths of 0.06, 0.13, and 0.19 m. It was concluded that the optimum condition (i.e., 92% algal cell disruption) was achieved when the power intensity was 7 kWh/m3, under vacuum conditions, at a frequency of 20 kHz and 180 minutes of exposure time. Higher power intensity gave higher energy for cell disruption, moreover by depressurizing the air above the algae solution, the lysis effect for algae reduction increased from 20% to 70% compared to the non-depressurized system due to higher cavitation bubble production. In addition, the depth of the transducer was another factor that could increase the lysis of the algae water. Therefore, this technology has future potential application for algae removal from water.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135989953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wael A. Salah, Basem Abu Zneid, Amir Abu_Al_Aish, Mays Nofal
{"title":"Development of Smart and Portable Controllable Syringe Pump System for Medical Applications","authors":"Wael A. Salah, Basem Abu Zneid, Amir Abu_Al_Aish, Mays Nofal","doi":"10.5614/j.eng.technol.sci.2023.55.3.7","DOIUrl":"https://doi.org/10.5614/j.eng.technol.sci.2023.55.3.7","url":null,"abstract":"Due to their efficiency and adaptability, automated applications are consistently gaining popularity around the world. Robotics and their applications as used in a variety of commonplace industries, such as medical applications, require a high level of precision and accuracy. This can be achieved by utilizing automated applications. In this work, the development and design of a regulated injection pump is detailed. The developed prototype is a type of robot that can be utilized in hospitals and other medical facilities. The proposed design is used to pump specific liquid volumes as specified by the user. During liquid pumping, both the fluid’s volume and velocity can be manipulated. Implementation of the proposed system required the development of a complete mechanical system and a controller. The proposed system was implemented successfully, and its operation was deemed satisfactory. According to the results, the accuracy of the system was also satisfactory. Using a flow sensor, the reference value and the measured value acquired from the designed device were compared. Compared to similar devices, the proposed system demonstrated exceptional precision, with an average error rate of less than 1.5%. The proposed model has the advantages of using a commercially available injection syringe and being significantly less expensive than similar devices on the market.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135991005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compaction Control Using Degree of Saturation and Plasticity Index on Tropical Soil","authors":"Hasbullah Nawir, Laras Dipa Pramudita, Tita Kartika Dewi, Dayu Apoji, Sugeng Krisnanto","doi":"10.5614/j.eng.technol.sci.2023.55.3.5","DOIUrl":"https://doi.org/10.5614/j.eng.technol.sci.2023.55.3.5","url":null,"abstract":"Soil compaction in the field is conventionally controlled using maximum dry density, (ρd)max, and optimum moisture content, (w)opt, as the target properties. However, achieving accurate control of these target properties can be difficult due to variation of compaction energy level (CEL) and soil type. Recently, a novel soil compaction control approach using optimum degree of saturation, (Sr)opt, as the target properties has been proposed. It was argued that (Sr)opt can be a better compaction control property as the value is less sensitive to the variation of CEL and soil type. This paper presents an investigation of the compaction characteristics of tropical soils from several locations in Indonesia based on both primary and secondary data. This study was performed by exploring the relationships between (i) dry density (ρd) and Sr, (ii) (ρd) and plasticity index (PI), (iii) (ρd) and CBR, as well as (iv) (ρd) and permeability. This study showed that the (Sr)opt of the soils was 91.2%, with variation between 81.2% and 96.5%. This study also showed that (ρd)max can be related to PI at a given CEL. It is expected that the proposed relationships can be better references for field compaction control practices in Indonesia.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135989892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bandwidth and Gain Enhancement of Microstrip Leaky-Wave Antennas with Slot and Defected Ground Structure","authors":"Fitri Yuli Zulkifli, Muhamad Wahyu Iqbal","doi":"10.5614/j.eng.technol.sci.2023.55.3.6","DOIUrl":"https://doi.org/10.5614/j.eng.technol.sci.2023.55.3.6","url":null,"abstract":"This paper discusses the design, simulation, and realization of a leaky-wave microstrip antenna with multiple slots and defected ground structure (DGS). The leaky-wave microstrip antenna with multiple slots and DGS was designed to operate at 5.925-6,425 GHz for wireless local area network applications (WLANs), with a gain of ≥4dBi. The antenna uses FR-4 epoxy as the substrate with a dielectric constant of 4.6 and a thickness of 1.6 mm. The leaky-wave microstrip antenna has dimensions of 45.1 mm × 24.8 mm × 1.6 mm, while the leaky-wave microstrip antenna with multiple slots and DGS has dimensions of 40.6 mm × 25 mm × 1.6 mm. The simulation results showed that adding multiple slots and DGS to the leaky-wave microstrip antenna increased the bandwidth from 280 MHz (5.859–6.139 GHz) to 691 MHz (5.854–6.545 GHz) while the gain increased from 4.47 to 5.04 dBi. Meanwhile, the measurement results showed that the bandwidth parameter increased from 273 MHz (5.877–6.150 GHz) to 684 MHz (5.845–6.529 GHz) and the gain parameter from 4.53 to 5.06 dBi at 6 GHz.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135989954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}