Journal of Eukaryotic Microbiology最新文献

筛选
英文 中文
Katarium polorum n. sp., n. g., a novel thecofilosean amoeba (Cercozoa, Rhizaria) from the polar oceans.
IF 2.1 4区 生物学
Journal of Eukaryotic Microbiology Pub Date : 2024-11-29 DOI: 10.1111/jeu.13071
Marcel Dominik Solbach, Michael Bonkowski, Kenneth Dumack
{"title":"Katarium polorum n. sp., n. g., a novel thecofilosean amoeba (Cercozoa, Rhizaria) from the polar oceans.","authors":"Marcel Dominik Solbach, Michael Bonkowski, Kenneth Dumack","doi":"10.1111/jeu.13071","DOIUrl":"https://doi.org/10.1111/jeu.13071","url":null,"abstract":"<p><p>Thecate amoebae play important roles in terrestrial and aquatic ecosystems. This study introduces a novel thecofilosean amoeba from Arctic and Antarctic sea sediments. Phylogenetic analysis based on the 18S rDNA sequence places it in the family Chlamydophryidae (order Tectofilosida, class Thecofilosea). However, the novel organism exhibits a significant genetic divergence and distinct morphology from its closest relatives, prompting us to erect the novel genus Katarium with its type species Katarium polorum. K. polorum is a consumer of diatoms and prokaryotes, indicating an important role in nutrient cycling in the polar marine food webs.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":" ","pages":"e13071"},"PeriodicalIF":2.1,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Acknowledgment 编辑致谢。
IF 2.1 4区 生物学
Journal of Eukaryotic Microbiology Pub Date : 2024-11-28 DOI: 10.1111/jeu.13068
{"title":"Editorial Acknowledgment","authors":"","doi":"10.1111/jeu.13068","DOIUrl":"10.1111/jeu.13068","url":null,"abstract":"","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"71 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142739536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retention of blue-green cryptophyte organelles by Mesodinium rubrum and their effects on photophysiology and growth. Mesodinium rubrum 对蓝绿隐花植物细胞器的保留及其对光生理学和生长的影响。
IF 2.1 4区 生物学
Journal of Eukaryotic Microbiology Pub Date : 2024-11-25 DOI: 10.1111/jeu.13066
Holly V Moeller, Amelie L'Etoile-Goga, Lucas Vincenzi, Andreas Norlin, Gina S Barbaglia, Gabriel C Runte, Jonatan T Kaare-Rasmussen, Matthew D Johnson
{"title":"Retention of blue-green cryptophyte organelles by Mesodinium rubrum and their effects on photophysiology and growth.","authors":"Holly V Moeller, Amelie L'Etoile-Goga, Lucas Vincenzi, Andreas Norlin, Gina S Barbaglia, Gabriel C Runte, Jonatan T Kaare-Rasmussen, Matthew D Johnson","doi":"10.1111/jeu.13066","DOIUrl":"https://doi.org/10.1111/jeu.13066","url":null,"abstract":"<p><p>As chloroplast-stealing or \"kleptoplastidic\" lineages become more reliant on stolen machinery, they also tend to become more specialized on the prey from which they acquire this machinery. For example, the ciliate Mesodinium rubrum obtains > 95% of its carbon from photosynthesis, and specializes on plastids from the Teleaulax clade of cryptophytes. However, M. rubrum is sometimes observed in nature containing plastids from other cryptophyte species. Here, we report on substantial ingestion of the blue-green cryptophyte Hemiselmis pacifica by M. rubrum, leading to organelle retention and transient increases in M. rubrum's growth rate. However, microscopy data suggest that H. pacifica organelles do not experience the same rearrangement and integration as Teleaulax amphioxeia's. We measured M. rubrum's functional response, quantified the magnitude and duration of growth benefits, and estimated kleptoplastid photosynthetic rates. Our results suggest that a lack of discrimination between H. pacifica and the preferred prey T. amphioxeia (perhaps due to similarities in cryptophyte size and swimming behavior) may result in H. pacifica ingestion Thus, while blue-green cryptophytes may represent a negligible prey source in natural environments, they may help M. rubrum survive when Teleaulax are unavailable. Furthermore, these results represent a useful tool for manipulating M. rubrum's cell biology and photophysiology.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":" ","pages":"e13066"},"PeriodicalIF":2.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine structural features of the free-living stages of Amyloodinium ocellatum (Dinoflagellata, Thoracosphaeraceae): A marine fish ectoparasite. Amyloodinium ocellatum(甲壳纲,Thoracosphaeraceae)自由生活阶段的精细结构特征:一种海洋鱼类外寄生虫。
IF 2.1 4区 生物学
Journal of Eukaryotic Microbiology Pub Date : 2024-11-18 DOI: 10.1111/jeu.13067
Zhicheng Li, Jingyu Zhuang, Jizhen Cao, Qing Han, Zhi Luo, Baotun Wang, Hebing Wang, Chuanfu Dong, Anxing Li
{"title":"Fine structural features of the free-living stages of Amyloodinium ocellatum (Dinoflagellata, Thoracosphaeraceae): A marine fish ectoparasite.","authors":"Zhicheng Li, Jingyu Zhuang, Jizhen Cao, Qing Han, Zhi Luo, Baotun Wang, Hebing Wang, Chuanfu Dong, Anxing Li","doi":"10.1111/jeu.13067","DOIUrl":"https://doi.org/10.1111/jeu.13067","url":null,"abstract":"<p><p>Amyloodinium ocellatum is a protozoan parasite that causes amyloodiniosis in marine and brackish water fish, threatening global aquaculture. The present study investigates the morphology and ultrastructure of the free-living stages of A. ocellatum (tomont and dinospore) using light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Dinospores measured 13.03-19.66 μm in length, 12.32-18.71 μm in width, and were laterally flattened. Dinospores had a transverse flagellum for propulsion and a longitudinal flagellum for direction control. The cyst wall had three distinct layers and included cellulose. The outer wall was coated with numerous bacteria. The orange-red speckled eyespot was observed all tomont developmental stages and in the dinospore of A. ocellatum. Tomonts proliferation required successive nuclear division, the formation of new cyst walls, and cytoplasmic segregation. The cytoplasm comprises mainly the matrix, organelles, and inclusions. The matrix was grainy and evenly distributed. In addition to organelles, including mitochondria with tubular cristae, Golgi apparatus, and endoplasmic reticulum, the cytoplasm had starch grains and lipid droplets as inclusions. The A. ocellatum cells lacked chloroplasts. This study provides the first ultrastructural view of the cytoplasmic structure of the free-living stages of A. ocellatum.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":" ","pages":"e13067"},"PeriodicalIF":2.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of protease inhibitors on the intraerythrocytic development of Babesia microti and Babesia duncani, the causative agents of human babesiosis. 蛋白酶抑制剂对人类巴贝西亚原虫小巴贝西亚和邓卡尼巴贝西亚红细胞内发育的影响。
IF 2.1 4区 生物学
Journal of Eukaryotic Microbiology Pub Date : 2024-11-18 DOI: 10.1111/jeu.13064
Temitope Aderanti, Jordan M Marshall, Jose Thekkiniath
{"title":"Effect of protease inhibitors on the intraerythrocytic development of Babesia microti and Babesia duncani, the causative agents of human babesiosis.","authors":"Temitope Aderanti, Jordan M Marshall, Jose Thekkiniath","doi":"10.1111/jeu.13064","DOIUrl":"https://doi.org/10.1111/jeu.13064","url":null,"abstract":"<p><p>Human babesiosis is a malaria-like, tick-borne infectious disease with a global distribution. Babesiosis is caused by intraerythrocytic, apicomplexan parasites of the genus Babesia. In the United States, human babesiosis is caused by Babesia microti and Babesia duncani. Current treatment for babesiosis includes either the combination of atovaquone and azithromycin or the combination of clindamycin and quinine. However, the side effects of these agents and the resistance posed by these parasites call for alternative approaches for treating human babesiosis. Proteases play several roles in the context of parasitic lifestyle and regulate basic biological processes including cell death, cell progression, and cell migration. Using the SYBR Green-1 assay, we screened a protease inhibitor library that consisted of 160 compounds against B. duncani in vitro and identified 13 preliminary hits. Dose response assays of hit compounds against B. duncani and B. microti under in vitro conditions identified five effective inhibitors against parasite growth. Of these compounds, we chose ixazomib, a proteasome inhibitor as a potential drug for animal studies based on its lower IC<sub>50</sub> and a higher therapeutic index in comparison with other compounds. Our results suggest that Babesia proteasome may be an important drug target and that developing this class of drugs may be important to combat human babesiosis.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":" ","pages":"e13064"},"PeriodicalIF":2.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Broad-range necrophytophagy in the flagellate Orciraptor agilis (Viridiraptoridae, Cercozoa) and the underappreciated role of scavenging among protists. 鞭毛虫Orciraptor agilis(Viridiraptoridae,Cercozoa)的大范围食腐作用以及原生动物中未得到充分重视的清道夫作用。
IF 2.1 4区 生物学
Journal of Eukaryotic Microbiology Pub Date : 2024-11-03 DOI: 10.1111/jeu.13065
Jannika Moye, Sebastian Hess
{"title":"Broad-range necrophytophagy in the flagellate Orciraptor agilis (Viridiraptoridae, Cercozoa) and the underappreciated role of scavenging among protists.","authors":"Jannika Moye, Sebastian Hess","doi":"10.1111/jeu.13065","DOIUrl":"https://doi.org/10.1111/jeu.13065","url":null,"abstract":"<p><p>Protists show diverse lifestyles and fulfill important ecological roles as primary producers, predators, symbionts, and parasites. The degradation of dead microbial biomass, instead, is mainly attributed to bacteria and fungi, while necrophagy by protists remains poorly recognized. Here, we assessed the food range specificity and feeding behavior of the algivorous flagellate Orciraptor agilis (Viridiraptoridae, Cercozoa) with a large-scale feeding experiment. We demonstrate that this species is a broad-range necrophage, which feeds on a variety of eukaryotic and prokaryotic algae, but fails to grow on the tested fungi. Furthermore, our microscopic observations reveal an unexpected flexibility of O. agilis in handling food items of different structures and biochemistry, demonstrating that sophisticated feeding strategies in protists do not necessarily indicate narrow food ranges.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":" ","pages":"e13065"},"PeriodicalIF":2.1,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The identity of Centrodinium elongatum, type species of the dinoflagellate genus Centrodinium (Dinophyceae), and a review on the synonymy of allied species Centrodinium elongatum(甲藻属 Centrodinium 的模式种)的身份及相关物种的同义综述。
IF 2.1 4区 生物学
Journal of Eukaryotic Microbiology Pub Date : 2024-10-10 DOI: 10.1111/jeu.13062
Fernando Gómez, Tania Corina Navarrete-Carlos, Yahir Enrique López-Osorio, Huan Zhang, Eugenio Raymond, Rafael Salas, Rosalba Alonso-Rodríguez, Senjie Lin
{"title":"The identity of Centrodinium elongatum, type species of the dinoflagellate genus Centrodinium (Dinophyceae), and a review on the synonymy of allied species","authors":"Fernando Gómez,&nbsp;Tania Corina Navarrete-Carlos,&nbsp;Yahir Enrique López-Osorio,&nbsp;Huan Zhang,&nbsp;Eugenio Raymond,&nbsp;Rafael Salas,&nbsp;Rosalba Alonso-Rodríguez,&nbsp;Senjie Lin","doi":"10.1111/jeu.13062","DOIUrl":"10.1111/jeu.13062","url":null,"abstract":"<p>The planktonic dinoflagellate genus <i>Centrodinium</i> has been understudied, with the type species <i>C</i>. <i>elongatum</i> remaining undocumented since the original description. Here, we report <i>C</i>. <i>elongatum</i> isolated from Mazatlán, Mexican Pacific. In the chains, the posterior daughter cell with an incomplete apical horn shows the morphology of <i>C</i>. <i>elongatum</i>, while the anterior daughter cell with complete epitheca corresponds to <i>C</i>. <i>pulchrum</i>. For the first time, a species of <i>Centrodinium</i> sensu stricto (highly laterally flattened species with horns) was cultured. An unarmored life stage, known as <i>Murrayella ovalis</i>, derived from the spheroplast after ecdysis. In the rDNA molecular phylogenies, <i>C</i>. <i>elongatum</i> (=<i>C</i>. <i>pulchrum</i>) nested as basal to morphologically similar species (<i>C</i>. <i>eminens</i> and <i>C</i>. <i>intermedium</i>) and as a sister group of a former <i>Murrayella</i> species, <i>C</i>. <i>punctatum</i>. <i>C</i>. <i>elongatum</i> differs from <i>C</i>. <i>eminens</i> and <i>C</i>. <i>intermedium</i> in the chain formation, second apical (2′) plate not being divided, horns with coarse poroid ornamentation, and missing prominent distal spinules. The taxonomy of <i>Centrodinium</i> sensu stricto is revised, with a discussion in the identities of <i>C</i>. <i>complanatum</i>, <i>C</i>. <i>eminens</i>, and <i>C</i>. <i>maximum</i>. The name <i>C</i>. <i>deflexum</i> is restored as a senior synonym of <i>C</i>. <i>intermedium</i> and <i>C</i>. <i>ovale</i>.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"71 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refurbishing the marine parasitoid order Pirsoniales with newly (re)described marine and freshwater free-living predators 利用新近(重新)描述的海洋和淡水自由生活捕食者,重建海洋寄生虫目(Pirsoniales)。
IF 2.1 4区 生物学
Journal of Eukaryotic Microbiology Pub Date : 2024-10-01 DOI: 10.1111/jeu.13061
Kristina I. Prokina, Naoji Yubuki, Denis V. Tikhonenkov, Maria Christina Ciobanu, Purificación López-García, David Moreira
{"title":"Refurbishing the marine parasitoid order Pirsoniales with newly (re)described marine and freshwater free-living predators","authors":"Kristina I. Prokina,&nbsp;Naoji Yubuki,&nbsp;Denis V. Tikhonenkov,&nbsp;Maria Christina Ciobanu,&nbsp;Purificación López-García,&nbsp;David Moreira","doi":"10.1111/jeu.13061","DOIUrl":"10.1111/jeu.13061","url":null,"abstract":"<p>Pirsoniales is a stramenopile order composed of marine parasitoids of diatoms with unique life cycle. Until recently, a single genus, <i>Pirsonia</i>, uniting six species, was known. The recent identification of new free-living eukaryotrophic Pirsoniales <i>Pirsonia chemainus</i>, <i>Feodosia pseudopoda</i>, and <i>Koktebelia satura</i> changed our understanding of this group as exclusively parasitic. However, their cell ultrastructure and feeding preferences were not fully studied due to the death of the cultures. In this study, we re-isolated some of these Pirsoniales and established six new strains exhibiting predatory behavior, including a first freshwater representative. This allowed us to describe five new genera and species, as well as to emend the diagnosis of the order Pirsoniales. The 18S rRNA gene phylogenetic analysis revealed the position of new strains within Pirsoniales and their relationships with parasitoid relatives and environmental sequence lineages. Feeding experiments on novel Pirsoniales strains using diverse algal prey showed that they were not able to form trophosomes and auxosomes. The ability of cell aggregation in Pirsoniales was observed for the first time. One of the studied strains contained intracellular gammaproteobacteria distantly related to <i>Coxiella</i>. Ultrastructural analyses revealed a more complex cytoskeleton structure in Pirsoniales than previously thought and supported the monophyly of Bigyromonadea and Pseudofungi.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"71 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jeu.13061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomics of Diphyllatea (CRuMs) from South Pacific crater lakes confirm new cryptic clades 南太平洋陨石坑湖中的 Diphyllatea(CRuMs)转录组学证实了新的隐秘支系。
IF 2.1 4区 生物学
Journal of Eukaryotic Microbiology Pub Date : 2024-09-28 DOI: 10.1111/jeu.13060
Luis Javier Galindo, Varsha Mathur, Hadleigh Frost, Guifré Torruella, Thomas A. Richards, Nicholas A. T. Irwin
{"title":"Transcriptomics of Diphyllatea (CRuMs) from South Pacific crater lakes confirm new cryptic clades","authors":"Luis Javier Galindo,&nbsp;Varsha Mathur,&nbsp;Hadleigh Frost,&nbsp;Guifré Torruella,&nbsp;Thomas A. Richards,&nbsp;Nicholas A. T. Irwin","doi":"10.1111/jeu.13060","DOIUrl":"10.1111/jeu.13060","url":null,"abstract":"<p>The Diphyllatea (CRuMs) are heterotrophic protists currently divided into three distinct clades (Diphy I–III). Diphy I are biflagellates in the genus <i>Diphylleia</i>, whereas Diphy II and III represent cryptic clades comprising <i>Collodictyon</i>-type quadriflagellates that were recently distinguished based on rRNA gene phylogenies. Here, we isolated Diphyllatea from freshwater crater lakes on two South Pacific islands and generated high-quality transcriptomes from species representing each clade, including the first transcriptomic data from Diphy III. Phylogenomic analyses support the separation of Diphy II and III, while transcriptome completeness highlights the utility of these data for future studies. Lastly, we discuss the biogeography and ecology of Diphyllatea on these remote islands.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"71 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jeu.13060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrastructural and molecular characterization of Glugea sp. (microsporidia), a parasite of the Red Sea fish Carangoides bajad (Carangidae) 红海鱼类 Carangoides bajad(鲤科)的寄生虫 Glugea sp.(微孢子虫)的超微结构和分子特征描述
IF 2.1 4区 生物学
Journal of Eukaryotic Microbiology Pub Date : 2024-09-10 DOI: 10.1111/jeu.13058
Abdel-Azeem S. Abdel-Baki, Shawky M. Aboelhadid, Heba Abdel-Tawab, Sónia Rocha, Manal Ahmed, Saleh Al-Quraishy, Lamjed Mansour
{"title":"Ultrastructural and molecular characterization of Glugea sp. (microsporidia), a parasite of the Red Sea fish Carangoides bajad (Carangidae)","authors":"Abdel-Azeem S. Abdel-Baki,&nbsp;Shawky M. Aboelhadid,&nbsp;Heba Abdel-Tawab,&nbsp;Sónia Rocha,&nbsp;Manal Ahmed,&nbsp;Saleh Al-Quraishy,&nbsp;Lamjed Mansour","doi":"10.1111/jeu.13058","DOIUrl":"10.1111/jeu.13058","url":null,"abstract":"<p><i>Glugea</i> sp. found infecting the liver of the teleost fish <i>Carangoides bajad</i> from the Red Sea, Egypt, is described based on light microscopy and ultrastructural characteristics combined with phylogenetic analyses. This microsporidium forms whitish xenomas up to ~4 mm in size. Xenomas display numerous parasitophorous vacuoles totally filled by mature spores, no other life cycle stages were observed. Mature spores ellipsoidal and measuring 6.3 × 4.0 μm in size. The polaroplast appears composed of two distinct regions: an electron-dense vesicular region and a densely packed lamellar region. The polar tubule forms approximately 24–27 coils arranged in three layers encircling the posterior vacuole. The small subunit (SSU) rRNA gene and its ITS region were sequenced and showed the highest similarity of 99.4% to other <i>Glugea</i> spp. Bayesian inference and maximum likelihood analyses place the novel isolate within the <i>Glugea</i> clade, more specifically within a subclade that predominantly grouped species described from fish inhabiting the Arabian Gulf or Red Sea. The results validate the parasite's classification in the <i>Glugea</i> genus. Nevertheless, until more detailed ultrastructural and molecular data are obtained, the identification of the current <i>Glugea</i> species is hampered by the absence of some developmental stages and the high degree of genetic similarity.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"71 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信