Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering最新文献

筛选
英文 中文
Technological characterization and environment-friendly possibilities to reuse water treatment sludge in building materials. 在建筑材料中再利用水处理污泥的技术特征和环保可能性。
IF 1.9 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-06-17 DOI: 10.1080/10934529.2024.2367353
J B Reis, W M K Levandoski, M Krogel, S T Ferrazzo, G D L Pasquali, E P Korf
{"title":"Technological characterization and environment-friendly possibilities to reuse water treatment sludge in building materials.","authors":"J B Reis, W M K Levandoski, M Krogel, S T Ferrazzo, G D L Pasquali, E P Korf","doi":"10.1080/10934529.2024.2367353","DOIUrl":"10.1080/10934529.2024.2367353","url":null,"abstract":"<p><p>Water treatment plants (WTPs) produce thousands of tons of sludge annually, which is destined for landfill disposal, an environmentally and economically impractical alternative. Chemical, mineralogical, and morphological characterization besides environmental classification has been performed for WTP sludge and it was evaluated application potential in building materials, from a literature review. The characterization was carried out by X-ray fluorescence spectrometry, X-ray diffraction, scanning electron microscopy analysis, and leaching and solubilization tests. The results show that the presence of activated charcoal residues from water treatment in one type of sludge was of little relevance for changes in the properties of the waste. Both sludges have a wide range of particle sizes, consisting mainly of silica, aluminum and iron oxides, as well as kaolinite, quartz, and iron minerals. Special attention must be paid to the solubilization of metallic contaminants to avoid contamination risks and order to make the application safer and more effective, it is necessary to study deeply ways to inert the WTP sludge. The sludges studied have a high potential for application in ceramic products, mortars, geopolymers and concrete paving stones. Depending on the type of building material, different contents of sludge in natural or calcined state can be incorporated.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecotoxicological studies of direct and indirect genotoxicity with Artemia: a integrative review. 蒿属鱼直接和间接遗传毒性的生态毒理学研究:综述。
IF 1.9 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-08-01 DOI: 10.1080/10934529.2024.2384216
Clessius Ribeiro de Souza, Gabriel Souza-Silva, Fernanda Viana Moreira Silva, Paula von Randow Cardoso, Walter Dos Santos Lima, Cíntia Aparecida de Jesus Pereira, Marcos Paulo Gomes Mol, Micheline Rosa Silveira
{"title":"Ecotoxicological studies of direct and indirect genotoxicity with <i>Artemia</i>: a integrative review.","authors":"Clessius Ribeiro de Souza, Gabriel Souza-Silva, Fernanda Viana Moreira Silva, Paula von Randow Cardoso, Walter Dos Santos Lima, Cíntia Aparecida de Jesus Pereira, Marcos Paulo Gomes Mol, Micheline Rosa Silveira","doi":"10.1080/10934529.2024.2384216","DOIUrl":"10.1080/10934529.2024.2384216","url":null,"abstract":"<p><p><i>Artemia</i> is a brine shrimp genus adapted to extreme habitats like ranges salinity from 5-25 g/L and in temperatures from 9 to 35 °C. It is widely distributed and used as an environmental quality biomarker. <i>Artemia franciscana</i> and <i>Artemia salina</i> species are commonly used in ecotoxicological studies and genotoxicity assays due to their short life cycle, high fecundity rate, easy culture, and availability. Thus, considering the importance of these tests in ecotoxicological studies, the present study aimed to present <i>Artemia</i> genus as a biological model in genotoxicity research. To this end, we reviewed the literature, analyzing data published until July 2023 in the Web of Science, SCOPUS, Embase, and PubMed databases. After screening, we selected 34 studies in which the genotoxicity of <i>Artemia</i> for various substances. This review presents the variability of the experimental planning of assays and biomarkers in genotoxicity using <i>Artemia</i> genus as a biological model for ecotoxicological studies and show the possibility of monitoring biochemical alterations and genetic damage effects. Also highlight innovative technologies such as transcriptomic and metabolomic analysis, as well as studies over successive generations to identify changes in DNA and consequently in gene expression.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of ozone treatment on the removal effectiveness of various refractory compounds in wastewater from petroleum refineries. 臭氧处理对石油炼制废水中各种难降解化合物去除效果的影响。
IF 2.1 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-05-10 DOI: 10.1080/10934529.2024.2348417
Nkosinathi Khoza, Tumisang Seodigeng, Musamba Banza, Aoyi Ochieng
{"title":"The impact of ozone treatment on the removal effectiveness of various refractory compounds in wastewater from petroleum refineries.","authors":"Nkosinathi Khoza, Tumisang Seodigeng, Musamba Banza, Aoyi Ochieng","doi":"10.1080/10934529.2024.2348417","DOIUrl":"10.1080/10934529.2024.2348417","url":null,"abstract":"<p><p>Large volumes of wastewater are generated during petroleum refining processes. Petroleum refinery wastewater (PRW) can contain highly toxic compounds that can harm the environment. These toxic compounds can be a challenge in biological treatment technologies due to the effects of these compounds on microorganisms. These challenges can be overcome by using ozone (O<sub>3</sub>) as a standalone or as a pretreatment to the biological treatment. Ozone was used in this study to degrade the organic pollutants in the heavily contaminated PRW from a refinery in Mpumalanga province of South Africa. The objective was achieved by treating the raw PRW using ozone at different ozone treatment times (15, 30, 45, and 60 min) at a fixed ozone concentration of 3.53 mg/dm<sup>3</sup>. The ozone treatment was carried out in a 2-liter custom-designed plexiglass cylindrical reactor. Ozone was generated from an Eco-Lab-24 corona discharge ozone generator using clean, dry air from the Afrox air cylinder as feed. The chemical oxygen demand, gas chromatograph characterization, and pH analysis were performed on the pretreated and post-treated PRW samples to ascertain the impact of the ozone treatment. The ozone treatment was effective in reducing the benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds in the PRW. The 60-min ozone treatment of different BTEX pollutants in the PRW resulted in the following percentage reduction: benzene 95%, toluene 77%, m + p-xylene 70%, ethylbenzene 69%, and o-xylene 65%. This study has shown the success of using ozone in reducing the toxic BTEX compounds in a heavily contaminated PRW.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140908790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decolorization enhancement of basic fuchsin by UV/H2O2 process: optimization and modeling using Box Behnken design. 紫外线/H2O2 工艺对碱性品红的脱色增效:利用盒式贝肯设计进行优化和建模。
IF 1.9 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-06-21 DOI: 10.1080/10934529.2024.2369432
Nawel El Hanafi, Aida Zaabar, Farid Aoudjit, Hakim Lounici
{"title":"Decolorization enhancement of basic fuchsin by UV/H<sub>2</sub>O<sub>2</sub> process: optimization and modeling using Box Behnken design.","authors":"Nawel El Hanafi, Aida Zaabar, Farid Aoudjit, Hakim Lounici","doi":"10.1080/10934529.2024.2369432","DOIUrl":"10.1080/10934529.2024.2369432","url":null,"abstract":"<p><p>The present work deals with the optimization of basic fuchsin dye removal from an aqueous solution using the ultraviolet UV/H<sub>2</sub>O<sub>2</sub> process. Response Surface Modeling (RSM) based on Box-Behnken experimental design (BBD) was applied as a tool for the optimization of operating conditions such as initial dye concentration (10-50 ppm), hydrogen peroxide dosage (H<sub>2</sub>O<sub>2</sub>) (10-20 mM/L) and irradiation time (60-180 min), at pH = 7.4 under ultra-violet irradiation (254 nm and 25 W intensity). Chemical oxygen demand (COD abatement) was used as a response variable. The Box-Behnken Design can be employed to develop a mathematical model for predicting UV/H<sub>2</sub>O<sub>2</sub> performance for COD abatement. COD abatement is sensitive to the concentration of hydrogen peroxide and irradiation time. Statistical analyses indicate a high correlation between observed and predicted values (R<sup>2</sup> > 0.98). In the BBD predictions, the optimal conditions in the UV/H<sub>2</sub>O<sub>2</sub> process for removing 99.3% of COD were found to be low levels of pollutant concentration (10 ppm), a high concentration of hydrogen peroxide dosage (20 mM/L), and an irradiation time of 80 min.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyethylene terephthalate nanoplastics cause oxidative stress induced cell death in Saccharomyces cerevisiae. 聚对苯二甲酸乙二醇酯纳米塑料在酿酒酵母中导致氧化应激诱导的细胞死亡。
IF 2.1 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-05-01 DOI: 10.1080/10934529.2024.2345026
Nur Kaluç, E Lal Çötelli, Salih Tuncay, Pınar B Thomas
{"title":"Polyethylene terephthalate nanoplastics cause oxidative stress induced cell death in <i>Saccharomyces cerevisiae</i>.","authors":"Nur Kaluç, E Lal Çötelli, Salih Tuncay, Pınar B Thomas","doi":"10.1080/10934529.2024.2345026","DOIUrl":"10.1080/10934529.2024.2345026","url":null,"abstract":"<p><p>Polyethylene terephthalate (PET) is a common plastic widely used in food and beverage packaging that poses a serious risk to human health and the environment due to the continual rise in its production and usage. After being produced and used, PET accumulates in the environment and breaks down into nanoplastics (NPs), which are then consumed by humans through water and food sources. The threats to human health and the environment posed by PET-NPs are of great concern worldwide, yet little is known about their biological impacts. Herein, the smallest sized PET-NPs so far (56 nm) with an unperturbed PET structure were produced by a modified dilution-precipitation method and their potential cytotoxicity was evaluated in Saccharomyces cerevisiae. Exposure to PET-NPs decreased cell viability due to oxidative stress induction revealed by the increased expression levels of stress response related-genes as well as increased lipid peroxidation. Cell death induced by PET-NP exposure was mainly through apoptosis, while autophagy had a protective role.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning, a powerful tool for the prediction of BiVO4 nanoparticles efficiency in photocatalytic degradation of organic dyes. 机器学习是预测 BiVO4 纳米粒子光催化降解有机染料效率的有力工具。
IF 2.1 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-02-23 DOI: 10.1080/10934529.2024.2319510
Gnanaprakasam A, Thirumarimurugan M, Shanmathi N
{"title":"Machine learning, a powerful tool for the prediction of BiVO<sub>4</sub> nanoparticles efficiency in photocatalytic degradation of organic dyes.","authors":"Gnanaprakasam A, Thirumarimurugan M, Shanmathi N","doi":"10.1080/10934529.2024.2319510","DOIUrl":"10.1080/10934529.2024.2319510","url":null,"abstract":"<p><p>Wastewater pollution caused by organic dyes is a growing concern due to its negative impact on human health and aquatic life. To tackle this issue, the use of advanced wastewater treatment with nano photocatalysts has emerged as a promising solution. However, experimental procedures for identifying the optimal conditions for dye degradation could be time-consuming and expensive. To overcome this, machine learning methods have been employed to predict the degradation of organic dyes in a more efficient manner by recognizing patterns in the process and addressing its feasibility. The objective of this study is to develop a machine learning model to predict the degradation of organic dyes and identify the main variables affecting the photocatalytic degradation capacity and removal of organic dyes from wastewater. Nine machine learning algorithms were tested including multiple linear regression, polynomial regression, decision trees, random forest, adaptive boosting, extreme gradient boosting, k-nearest neighbors, support vector machine, and artificial neural network. The study found that the XGBoosting algorithm outperformed the other models, making it ideal for predicting the photocatalytic degradation capacity of BiVO<sub>4</sub>. The results suggest that XGBoost is a suitable model for predicting the photocatalytic degradation of wastewater using BiVO<sub>4</sub> with different dopants.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139940038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of temperature on the dissolution of the lead (II) carbonate hydrocerussite for varying pH and dissolved inorganic carbon conditions. 不同 pH 值和溶解无机碳条件下温度对碳酸铅(II)氢cerussite 溶解的影响。
IF 2.1 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-04-24 DOI: 10.1080/10934529.2024.2340388
C S E Kushnir, C E Robinson
{"title":"Effect of temperature on the dissolution of the lead (II) carbonate hydrocerussite for varying pH and dissolved inorganic carbon conditions.","authors":"C S E Kushnir, C E Robinson","doi":"10.1080/10934529.2024.2340388","DOIUrl":"10.1080/10934529.2024.2340388","url":null,"abstract":"<p><p>The effect of temperature on the solubility of lead-bearing solid phases in water distribution systems for different water chemistry conditions remains unclear although lead concentrations are known to vary seasonally. The study objective is to explore the effect of temperature on the solubility of the lead(II) carbonate hydrocerussite under varying pH and DIC conditions. This is achieved through batch dissolution experiments conducted at multiple pHs (6-10) and DIC concentrations (20-200 mg CL<sup>-1</sup>) at temperatures ranging from 5 to 40 °C. A thermodynamic model was also applied to evaluate the model's ability to predict temperature effects on lead(II) carbonate solubility including solid phase transformations. In general, increasing temperature increased total dissolved lead at high pHs and the effect of temperature was greater for high DIC conditions, particularly for pH > 8. Temperature also influenced the pH at which the dominant lead(II) solid phase switched from hydrocerussite to cerussite (occurred between pH 7.25 to 10). Finally, the model was able to capture the overall trends observed despite thermodynamic data limitations. While this study focuses on a simple lead solid-aqueous system, findings provide important insights regarding the way in which temperature and water chemistry interact to affect lead concentrations.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of FeCl3 concentration in chemically enhanced primary treatment on the performance of a conventional wastewater treatment plant. A case study. 化学强化一级处理中氯化铁浓度对传统污水处理厂性能的影响。案例研究。
IF 2.1 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-03-12 DOI: 10.1080/10934529.2024.2328449
L M Ruiz, A Checa, J I Perez, J M Torre-Marín, A Muñoz-Ubiña, M A Gómez
{"title":"Effect of FeCl<sub>3</sub> concentration in chemically enhanced primary treatment on the performance of a conventional wastewater treatment plant. A case study.","authors":"L M Ruiz, A Checa, J I Perez, J M Torre-Marín, A Muñoz-Ubiña, M A Gómez","doi":"10.1080/10934529.2024.2328449","DOIUrl":"10.1080/10934529.2024.2328449","url":null,"abstract":"<p><p>The effect of coagulant dosage in a chemically enhanced primary treatment (CEPT) on the performance of a conventional wastewater treatment plant (WWTP) has been investigated. Lab-scale experiments simulations were carried out in order to evaluate the effect of coagulant addition on the primary settling performance. In these experiments, FeCl<sub>3</sub> was used as coagulant. Later, the WWTP was theoretically simulated using a commercial software (WEST®) to evaluate the effect of coagulation/flocculation on the global system, based on the results obtained at lab-scale. According to these results, the CEPT modifies the organic matter balance in the WWTP, decreasing the contribution of readily (S<sub>S</sub>) and slowly (X<sub>S</sub>) biodegradable fractions of COD to the aerobic biological process up to 27.3% and 80.8%, respectively, for a dosage of FeCl<sub>3</sub> of 24 mg L<sup>-1</sup>. Consequently, total suspended solids in the aerobic reactor and the secondary purged sludge decreased up to 33% and 13%, respectively. However, the influence on effluent quality was negligible. On the contrary, suspended solids concentration in the sludge to be treated by anaerobic digestion increased, mainly regarding the S<sub>s</sub> and X<sub>s</sub> fractions, which caused an 8.1% increase in biogas production potential, with approximately 60% of CH<sub>4</sub> concentration.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140110431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of heavy metals and human health risk associated with the consumption of crops cultivated in industrial areas of Maputo, Mozambique. 评估与食用莫桑比克马普托工业区种植的农作物有关的重金属和人类健康风险。
IF 2.1 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-05-11 DOI: 10.1080/10934529.2024.2349478
Mário Machunguene, Sónia V Guilundo, Rui S Oliveira, Célia M Martins, Orlando A Quilambo
{"title":"Assessment of heavy metals and human health risk associated with the consumption of crops cultivated in industrial areas of Maputo, Mozambique.","authors":"Mário Machunguene, Sónia V Guilundo, Rui S Oliveira, Célia M Martins, Orlando A Quilambo","doi":"10.1080/10934529.2024.2349478","DOIUrl":"10.1080/10934529.2024.2349478","url":null,"abstract":"<p><p>This study aimed to evaluate heavy metals concentrations in soils and vegetables (cabbage, lettuce, and cassava) cultivated at Matola and Beluluane Industrial Parks, and to assess health risks linked to their consumption through estimated daily intake, hazard index (HI), and incremental lifetime cancer risk. Concentrations of Al, As, Co, Cd, Cr, Ni, Pb, and Zn were determined in the two sites. Soil concentrations of As at Beluluane site and As, Cd, and Cr at Matola site exceeded reference limits of the Food and Agriculture Organization/World Health Organization, showing heavy metal contamination. At Beluluane site, all studied vegetables presented As and Pb levels higher than reference limits, Cd concentrations were higher than the reference limit in cabbage, lettuce, and cassava leaves. At Matola site crops concentrations of As, Cd, Cr, and Pb exceeded the reference limits. Zinc exceeded the reference limit in all crops except in cabbage. HIs for vegetables from Beluluane exceeded 1.0 in cabbage (2.66), lettuce (2.27), and cassava leaves (2.37). Likewise, at Matola, HIs exceeded 1.0 in lettuce (1.67), cassava leaves (1.65), and root tubers (13). We found that vegetables cultivated in industrial parks present high carcinogenic risk due to heavy metal contamination, rendering them unsuitable for human consumption.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140908769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PM2.5 induce neurotoxicity via iron overload and redox imbalance mediated-ferroptosis in HT22 cells. PM2.5 在 HT22 细胞中通过铁超载和氧化还原失衡介导的铁变态反应诱导神经毒性。
IF 2.1 4区 环境科学与生态学
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2024-01-01 Epub Date: 2024-03-26 DOI: 10.1080/10934529.2024.2331938
Shuhui Liu, Aiqing Wang, Danhong Zhou, Xuedi Zhai, Ling Ding, Liang Tian, Yidan Zhang, Jianshu Wang, Lili Xin
{"title":"PM<sub>2.5</sub> induce neurotoxicity via iron overload and redox imbalance mediated-ferroptosis in HT22 cells.","authors":"Shuhui Liu, Aiqing Wang, Danhong Zhou, Xuedi Zhai, Ling Ding, Liang Tian, Yidan Zhang, Jianshu Wang, Lili Xin","doi":"10.1080/10934529.2024.2331938","DOIUrl":"10.1080/10934529.2024.2331938","url":null,"abstract":"<p><p>PM<sub>2.5</sub> is an important risk factor for the development and progression of cognitive impairment-related diseases. Ferroptosis, a new form of cell death driven by iron overload and lipid peroxidation, is proposed to have significant implications. To verify the possible role of ferroptosis in PM<sub>2.5</sub>-induced neurotoxicity, we investigated the cytotoxicity, intracellular iron content, iron metabolism-related genes, oxidative stress indices and indicators involving in Nrf2 and ferroptosis signaling pathways. Neurotoxicity biomarkers as well as the ferroptotic cell morphological changes were determined by Western Blot and TEM analysis. Our results revealed that PM<sub>2.5</sub> induced cytotoxicity, lipid peroxidation, as indicated by MDA content, and neurotoxicity <i>via</i> Aβ deposition in a dose-related manner. Decreased cell viability and excessive iron accumulation in HT-22 cells can be partially blocked by ferroptosis inhibitors. Interestingly, GPX activity, Nrf2, and its regulated ferroptotic-related proteins (i.e. GPX4 and HO-1) were significantly up-regulated by PM<sub>2.5</sub>. Moreover, gene expression of <i>DMT1</i>, <i>TfR1</i>, <i>IRP2</i> and <i>FPN1</i> involved in iron homeostasis and NCOA4-dependent ferritinophagy were activated after PM<sub>2.5</sub> exposure. The results demonstrated that PM<sub>2.5</sub> triggered ferritinophagy-dependent ferroptotic cell death due to iron overload and redox imbalance. Activation of Nrf2 signaling pathways may confer a protective mechanism for PM<sub>2.5</sub>-induced oxidative stress and ferroptosis.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140293697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信