Ibrahim Ertugrul Yalcin, Volkan Altay, Munir Ozturk
{"title":"水葫芦的植物修复潜力及生态生理特征——以土耳其Orontes河为例。","authors":"Ibrahim Ertugrul Yalcin, Volkan Altay, Munir Ozturk","doi":"10.1080/10934529.2025.2497650","DOIUrl":null,"url":null,"abstract":"<p><p>The pollution of freshwater resources has become a critical global issue due to intensive and unregulated agricultural practices, rapid urbanization, and industrial expansion along waterways. Phytoremediation, which involves using aquatic macrophytes to remove contaminants from water, is recognized as an environmentally sustainable and cost-effective remediation strategy. This study investigates the phytoremediation capacity of <i>Eichhornia crassipes</i> in reducing heavy metal contamination in the transboundary Orontes (Asi) River within Türkiye's borders. The Asi River, spanning 571 km from Lebanon through Syria to the Mediterranean Sea in Hatay, Türkiye, is severely affected by heavy metal pollution, primarily due to agricultural activities. The study assessed the bioaccumulation potential of <i>E. crassipes</i>, which grows abundantly in the river, focusing on metal accumulation in its petioles. The concentrations of cadmium, cobalt, chromium, and lead in petioles were quantified at 6.69, 23.50, 29.77, and 65.25 mg kg<sup>-1</sup>, respectively, while the maximum concentrations of these metals in the aquatic habitat were 76.57, 303.26, 693.58, and 106.19 µg L<sup>-1</sup>, respectively. The effectiveness of phytoremediation can be further enhanced through genetic modification, microbial stimulation, and chemical or natural amendments. These findings illustrate the significant potential of <i>E. crassipes</i> for heavy metal remediation in natural water bodies, contributing to ecosystem conservation, species sustainability, and biodiversity protection.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"1-13"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phytoremediation potential and ecophysiological features of water hyacinth <i>Eichornia crassipes</i>: a case study from Orontes River, Türkiye.\",\"authors\":\"Ibrahim Ertugrul Yalcin, Volkan Altay, Munir Ozturk\",\"doi\":\"10.1080/10934529.2025.2497650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pollution of freshwater resources has become a critical global issue due to intensive and unregulated agricultural practices, rapid urbanization, and industrial expansion along waterways. Phytoremediation, which involves using aquatic macrophytes to remove contaminants from water, is recognized as an environmentally sustainable and cost-effective remediation strategy. This study investigates the phytoremediation capacity of <i>Eichhornia crassipes</i> in reducing heavy metal contamination in the transboundary Orontes (Asi) River within Türkiye's borders. The Asi River, spanning 571 km from Lebanon through Syria to the Mediterranean Sea in Hatay, Türkiye, is severely affected by heavy metal pollution, primarily due to agricultural activities. The study assessed the bioaccumulation potential of <i>E. crassipes</i>, which grows abundantly in the river, focusing on metal accumulation in its petioles. The concentrations of cadmium, cobalt, chromium, and lead in petioles were quantified at 6.69, 23.50, 29.77, and 65.25 mg kg<sup>-1</sup>, respectively, while the maximum concentrations of these metals in the aquatic habitat were 76.57, 303.26, 693.58, and 106.19 µg L<sup>-1</sup>, respectively. The effectiveness of phytoremediation can be further enhanced through genetic modification, microbial stimulation, and chemical or natural amendments. These findings illustrate the significant potential of <i>E. crassipes</i> for heavy metal remediation in natural water bodies, contributing to ecosystem conservation, species sustainability, and biodiversity protection.</p>\",\"PeriodicalId\":15671,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2025.2497650\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2025.2497650","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Phytoremediation potential and ecophysiological features of water hyacinth Eichornia crassipes: a case study from Orontes River, Türkiye.
The pollution of freshwater resources has become a critical global issue due to intensive and unregulated agricultural practices, rapid urbanization, and industrial expansion along waterways. Phytoremediation, which involves using aquatic macrophytes to remove contaminants from water, is recognized as an environmentally sustainable and cost-effective remediation strategy. This study investigates the phytoremediation capacity of Eichhornia crassipes in reducing heavy metal contamination in the transboundary Orontes (Asi) River within Türkiye's borders. The Asi River, spanning 571 km from Lebanon through Syria to the Mediterranean Sea in Hatay, Türkiye, is severely affected by heavy metal pollution, primarily due to agricultural activities. The study assessed the bioaccumulation potential of E. crassipes, which grows abundantly in the river, focusing on metal accumulation in its petioles. The concentrations of cadmium, cobalt, chromium, and lead in petioles were quantified at 6.69, 23.50, 29.77, and 65.25 mg kg-1, respectively, while the maximum concentrations of these metals in the aquatic habitat were 76.57, 303.26, 693.58, and 106.19 µg L-1, respectively. The effectiveness of phytoremediation can be further enhanced through genetic modification, microbial stimulation, and chemical or natural amendments. These findings illustrate the significant potential of E. crassipes for heavy metal remediation in natural water bodies, contributing to ecosystem conservation, species sustainability, and biodiversity protection.
期刊介绍:
14 issues per year
Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.