Ruchir Priyadarshi, Zohreh Riahi, Ajahar Khan, Jong-Whan Rhim
{"title":"The Use of Carbon Dots for Food Packaging and Preservation: Toxic or Beneficial?","authors":"Ruchir Priyadarshi, Zohreh Riahi, Ajahar Khan, Jong-Whan Rhim","doi":"10.1111/1541-4337.70180","DOIUrl":"https://doi.org/10.1111/1541-4337.70180","url":null,"abstract":"<div>\u0000 \u0000 <p>Carbon dots (CDs), which are emerging as versatile nanomaterials, have gained interest in food packaging and preservation due to their sustainable origin and multifunctional characteristics, such as antimicrobial, antioxidant, and UV-protective properties. CDs can be synthesized from biomass and have been proposed as functional additives to packaging material to improve the safety and shelf life of the packaged food. Despite these benefits, concerns are raised about their potential toxicity when leached into foods, especially since they belong to the nanomaterial category. Interestingly, foodborne CDs, which are naturally formed in heat-processed foods and have been consumed by humans for centuries, add a new complexity to the debate. Although there is no definitive evidence linking these endogenous CDs to adverse health effects, some studies suggest their potential to interfere with metabolism in animal models. In addition, the presence of hazardous substances in thermally processed foods, such as polycyclic aromatic hydrocarbons (PAHs), may further complicate safety assessment. This review addresses the paradox of CD from food and packaging sources, highlighting its dual role as both a potentially toxic agent and a beneficial functional material. More extensive research is essential to fully understand the long-term effects of CD on human health and to determine whether its use in food packaging is truly safe or beneficial.</p>\u0000 </div>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143865597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Modesta Abugu, Matthew Allan, Suzanne Johanningsmeier, Massimo Iorizzo, G. Craig Yencho
{"title":"Comprehensive review of sweetpotato flavor compounds: Opportunities for developing consumer-preferred varieties","authors":"Modesta Abugu, Matthew Allan, Suzanne Johanningsmeier, Massimo Iorizzo, G. Craig Yencho","doi":"10.1111/1541-4337.70172","DOIUrl":"https://doi.org/10.1111/1541-4337.70172","url":null,"abstract":"<p>Flavor contributes significantly to consumer preferences of cooked sweetpotato. Sugars largely drive the sweet taste, while the volatile organic compounds (VOCs), mainly classified as alcohols, aldehydes, ketones, and terpenes, provide characteristic aromas and influence the overall perception of flavor. In this paper, we review sweetpotato VOCs identified in the literature from 1980 to 2024 and discuss the efforts to understand how these compounds influence sensory perception and consumer preferences. Over 400 VOCs have been identified in cooked sweetpotato with 76 known to be aroma-active. Most of these aroma-active compounds are generated from Maillard reactions, Strecker, lipid and carotenoid degradation, or thermal release of terpenes from glycosidic bonds during cooking. Suggested mechanisms of formation of these aroma-active compounds are described. However, specific VOCs that are responsible for different aromas and flavors in cooked sweetpotatoes are yet to be fully characterized. There are significant opportunities to further identify the key predictors of aroma and flavor attributes in sweetpotato, which can be used to enhance the quality of existing varieties and develop new ones using a wide range of genetic tools. This review summarizes 44 years of research aimed at identifying key aroma compounds in cooked sweetpotato and provides a roadmap for future studies to guide breeders in developing high-quality, consumer-preferred varieties.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.70172","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143865596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruchir Priyadarshi, Zohreh Riahi, Ajahar Khan, Jong-Whan Rhim
{"title":"The Use of Carbon Dots for Food Packaging and Preservation: Toxic or Beneficial?","authors":"Ruchir Priyadarshi, Zohreh Riahi, Ajahar Khan, Jong-Whan Rhim","doi":"10.1111/1541-4337.70180","DOIUrl":"https://doi.org/10.1111/1541-4337.70180","url":null,"abstract":"<div>\u0000 \u0000 <p>Carbon dots (CDs), which are emerging as versatile nanomaterials, have gained interest in food packaging and preservation due to their sustainable origin and multifunctional characteristics, such as antimicrobial, antioxidant, and UV-protective properties. CDs can be synthesized from biomass and have been proposed as functional additives to packaging material to improve the safety and shelf life of the packaged food. Despite these benefits, concerns are raised about their potential toxicity when leached into foods, especially since they belong to the nanomaterial category. Interestingly, foodborne CDs, which are naturally formed in heat-processed foods and have been consumed by humans for centuries, add a new complexity to the debate. Although there is no definitive evidence linking these endogenous CDs to adverse health effects, some studies suggest their potential to interfere with metabolism in animal models. In addition, the presence of hazardous substances in thermally processed foods, such as polycyclic aromatic hydrocarbons (PAHs), may further complicate safety assessment. This review addresses the paradox of CD from food and packaging sources, highlighting its dual role as both a potentially toxic agent and a beneficial functional material. More extensive research is essential to fully understand the long-term effects of CD on human health and to determine whether its use in food packaging is truly safe or beneficial.</p>\u0000 </div>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143865595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Modesta Abugu, Matthew Allan, Suzanne Johanningsmeier, Massimo Iorizzo, G. Craig Yencho
{"title":"Comprehensive review of sweetpotato flavor compounds: Opportunities for developing consumer-preferred varieties","authors":"Modesta Abugu, Matthew Allan, Suzanne Johanningsmeier, Massimo Iorizzo, G. Craig Yencho","doi":"10.1111/1541-4337.70172","DOIUrl":"https://doi.org/10.1111/1541-4337.70172","url":null,"abstract":"<p>Flavor contributes significantly to consumer preferences of cooked sweetpotato. Sugars largely drive the sweet taste, while the volatile organic compounds (VOCs), mainly classified as alcohols, aldehydes, ketones, and terpenes, provide characteristic aromas and influence the overall perception of flavor. In this paper, we review sweetpotato VOCs identified in the literature from 1980 to 2024 and discuss the efforts to understand how these compounds influence sensory perception and consumer preferences. Over 400 VOCs have been identified in cooked sweetpotato with 76 known to be aroma-active. Most of these aroma-active compounds are generated from Maillard reactions, Strecker, lipid and carotenoid degradation, or thermal release of terpenes from glycosidic bonds during cooking. Suggested mechanisms of formation of these aroma-active compounds are described. However, specific VOCs that are responsible for different aromas and flavors in cooked sweetpotatoes are yet to be fully characterized. There are significant opportunities to further identify the key predictors of aroma and flavor attributes in sweetpotato, which can be used to enhance the quality of existing varieties and develop new ones using a wide range of genetic tools. This review summarizes 44 years of research aimed at identifying key aroma compounds in cooked sweetpotato and provides a roadmap for future studies to guide breeders in developing high-quality, consumer-preferred varieties.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.70172","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143865994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Anamul Hasan Chowdhury, Chowdhury Sanat Anjum Reem, Md. Ashrafudoulla, Md. Ashikur Rahman, Shanjida Shaila, Angela Jie-won Ha, Sang-Do Ha
{"title":"Role of advanced cleaning and sanitation techniques in biofilm prevention on dairy equipment","authors":"Md Anamul Hasan Chowdhury, Chowdhury Sanat Anjum Reem, Md. Ashrafudoulla, Md. Ashikur Rahman, Shanjida Shaila, Angela Jie-won Ha, Sang-Do Ha","doi":"10.1111/1541-4337.70176","DOIUrl":"https://doi.org/10.1111/1541-4337.70176","url":null,"abstract":"<p>Biofilm formation on dairy equipment is a persistent challenge in the dairy industry, contributing to product contamination, equipment inefficiency, and economic losses. Traditional methods such as manual cleaning and basic chemical sanitation are discussed as foundational approaches, followed by an in-depth investigation of cutting-edge technologies, including clean-in-place systems, high-pressure cleaning, foam cleaning, ultrasonic and electrochemical cleaning, dry ice blasting, robotics, nanotechnology-based agents, enzymatic cleaners, and oxidizing agents. Enhanced sanitation techniques, such as dry steam, pulsed light, acidic and alkaline electrolyzed water, hydrogen peroxide vapor, microbubble technology, and biodegradable biocides, are highlighted for their potential to achieve superior sanitation while promoting sustainability. The effectiveness, feasibility, and limitations of these methods are evaluated, emphasizing their role in maintaining dairy equipment hygiene and reducing biofilm-associated risks. Additionally, challenges, such as equipment compatibility, cost, and regulatory compliance, are addressed, along with insights into future directions and innovations, including automation, smart cleaning systems, and green cleaning solutions. This review provides a comprehensive resource for researchers, industry professionals, and policymakers aiming to tackle biofilm formation in dairy production systems and enhance food safety, operational efficiency, and sustainability.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in ozone technology for preservation of grains and end products: Application techniques, control of microbial contaminants, mitigation of mycotoxins, impact on quality, and regulatory approvals","authors":"Eugénio da Piedade Edmundo Sitoe, Flaviana Coelho Pacheco, Florentina Domingos Chilala","doi":"10.1111/1541-4337.70173","DOIUrl":"https://doi.org/10.1111/1541-4337.70173","url":null,"abstract":"<p>Ozone has emerged as a promising technology for preserving stored grains and end products. Its efficiency as a biocide and the absence of residues make it an attractive alternative to traditional chemical methods of food preservation. This study reviews recent advancements in ozone application techniques, including continuous flow treatments, closed-loop recirculation systems, and low-pressure application systems, as well as their impact on product quality. The study also examines the mechanisms of ozone action, its half-life in grain storage environments, and methods to ensure uniform gas distribution. The results of this study provide a foundation for understanding ozone reactions in various grain types and application systems, offering essential information for effectively sizing treatment systems, estimating ozone concentrations over time, and determining the quantity of products to be treated. A thorough comprehension of ozone behavior in porous environments, such as silos, and its stability under diverse environmental conditions is crucial for enhancing its applicability. While scientific evidence supports ozone's efficacy in controlling pests and microorganisms, further investigation is needed on its impact on the nutritional quality of grains and final products. Additionally, the review highlights the latest regulatory approvals for ozone use in the food industry, emphasizing the importance of compliance and safety. The findings underscore the need for continued technological development and economic analysis to evaluate the long-term viability of ozone applications in agriculture.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.70173","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mati Ullah Khan, Pengfei Yu, Yuyin Wu, Zhiwei Chen, Ling Kong, Anum Farid, Jiaqi Cui, Jun Yang
{"title":"Comprehensive review of enzymes (protease, lipase) in milk: Impact on storage quality, detection methods, and control strategies","authors":"Mati Ullah Khan, Pengfei Yu, Yuyin Wu, Zhiwei Chen, Ling Kong, Anum Farid, Jiaqi Cui, Jun Yang","doi":"10.1111/1541-4337.70164","DOIUrl":"https://doi.org/10.1111/1541-4337.70164","url":null,"abstract":"<p>Enzymes play a crucial role in determining the storage quality of milk by influencing various biochemical processes. Among these enzymes, proteases and lipases are of particular significance due to their impact on flavor, texture, and shelf-life stability. This study offers a thorough examination of proteases and lipases in milk, focusing on their enzymatic activities and mechanisms of action during storage. The present review addresses the techniques for monitoring enzyme activity, including fluorescence-based assays, spectrophotometry, fluorometry, mass spectrometry, biosensors, ELISA, polymerase chain reaction, and next-generation sequencing, emphasizing their sensitivity and applicability in quality control. Furthermore, various strategies for controlling enzyme activity in milk are examined, encompassing both thermal and non-thermal treatments, pH modulation, and the use of enzyme inhibitors. Additionally, the review explores the regulatory frameworks governing enzyme activity in dairy products to ensure compliance with safety and quality standards. A thorough understanding of the dynamics of proteases and lipases in dairy products is crucial for optimizing storage conditions, ensuring product quality, and meeting consumer demands for purity and nutritional integrity.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From waste to value: Integrating legume byproducts into sustainable industrialization","authors":"Jing-Chao Yu, Ying-Jin-Zhu Wu, Weon-Sun Shin","doi":"10.1111/1541-4337.70174","DOIUrl":"https://doi.org/10.1111/1541-4337.70174","url":null,"abstract":"<p>As the global demand for sustainable food sources grows, the effective utilization of agro-industrial byproducts has become increasingly essential. Among these, legume byproducts, which are often discarded as waste, hold substantial nutritional and functional properties that can significantly contribute to advancing circular economy goals within the food industry. Current research has unveiled the potential of these byproducts to enhance both environmental sustainability and economic efficiency. Rich in proteins, dietary fibers, and bioactive compounds, legume byproducts can serve as valuable resources in developing functional food ingredients. This review explores the nutritional profiles of various legume byproducts and highlights innovative processes and technologies involved in their valorization, such as fermentation, enzymatic treatments, and novel extraction techniques. Furthermore, it explores the impact of food formulations in optimizing the functional properties of legume byproduct-based ingredients, considering their impact on texture, stability, and sensory attributes. Consumer perceptions of sustainable products derived from these ingredients are also examined, emphasizing their potential to reshape modern dietary preferences toward more sustainable choices. However, despite the promising potential of these byproducts, several challenges remain to be solved, including the antinutrients factor, market limitations, limited consumer awareness, and complexities in scaling up production. In addition, it is essential to integrate circular economy principles and conduct life-cycle assessments throughout the value chain to ensure the sustainable use of legume byproducts. Addressing these challenges is critical to enhancing the valorization of legume byproducts and promoting a more comprehensive approach to food system sustainability.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.70174","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From waste to value: Integrating legume byproducts into sustainable industrialization","authors":"Jing-Chao Yu, Ying-Jin-Zhu Wu, Weon-Sun Shin","doi":"10.1111/1541-4337.70174","DOIUrl":"https://doi.org/10.1111/1541-4337.70174","url":null,"abstract":"<p>As the global demand for sustainable food sources grows, the effective utilization of agro-industrial byproducts has become increasingly essential. Among these, legume byproducts, which are often discarded as waste, hold substantial nutritional and functional properties that can significantly contribute to advancing circular economy goals within the food industry. Current research has unveiled the potential of these byproducts to enhance both environmental sustainability and economic efficiency. Rich in proteins, dietary fibers, and bioactive compounds, legume byproducts can serve as valuable resources in developing functional food ingredients. This review explores the nutritional profiles of various legume byproducts and highlights innovative processes and technologies involved in their valorization, such as fermentation, enzymatic treatments, and novel extraction techniques. Furthermore, it explores the impact of food formulations in optimizing the functional properties of legume byproduct-based ingredients, considering their impact on texture, stability, and sensory attributes. Consumer perceptions of sustainable products derived from these ingredients are also examined, emphasizing their potential to reshape modern dietary preferences toward more sustainable choices. However, despite the promising potential of these byproducts, several challenges remain to be solved, including the antinutrients factor, market limitations, limited consumer awareness, and complexities in scaling up production. In addition, it is essential to integrate circular economy principles and conduct life-cycle assessments throughout the value chain to ensure the sustainable use of legume byproducts. Addressing these challenges is critical to enhancing the valorization of legume byproducts and promoting a more comprehensive approach to food system sustainability.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.70174","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in ozone technology for preservation of grains and end products: Application techniques, control of microbial contaminants, mitigation of mycotoxins, impact on quality, and regulatory approvals","authors":"Eugénio da Piedade Edmundo Sitoe, Flaviana Coelho Pacheco, Florentina Domingos Chilala","doi":"10.1111/1541-4337.70173","DOIUrl":"https://doi.org/10.1111/1541-4337.70173","url":null,"abstract":"<p>Ozone has emerged as a promising technology for preserving stored grains and end products. Its efficiency as a biocide and the absence of residues make it an attractive alternative to traditional chemical methods of food preservation. This study reviews recent advancements in ozone application techniques, including continuous flow treatments, closed-loop recirculation systems, and low-pressure application systems, as well as their impact on product quality. The study also examines the mechanisms of ozone action, its half-life in grain storage environments, and methods to ensure uniform gas distribution. The results of this study provide a foundation for understanding ozone reactions in various grain types and application systems, offering essential information for effectively sizing treatment systems, estimating ozone concentrations over time, and determining the quantity of products to be treated. A thorough comprehension of ozone behavior in porous environments, such as silos, and its stability under diverse environmental conditions is crucial for enhancing its applicability. While scientific evidence supports ozone's efficacy in controlling pests and microorganisms, further investigation is needed on its impact on the nutritional quality of grains and final products. Additionally, the review highlights the latest regulatory approvals for ozone use in the food industry, emphasizing the importance of compliance and safety. The findings underscore the need for continued technological development and economic analysis to evaluate the long-term viability of ozone applications in agriculture.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.70173","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}