Journal of Climate最新文献

筛选
英文 中文
De Novo Design of Peptide Binders to Conformationally Diverse Targets with Contrastive Language Modeling. 利用对比语言建模从新设计多肽与形态各异靶标的结合剂
2区 地球科学
Journal of Climate Pub Date : 2024-07-22 DOI: 10.1101/2023.06.26.546591
Suhaas Bhat, Kalyan Palepu, Lauren Hong, Joey Mao, Tianzheng Ye, Rema Iyer, Lin Zhao, Tianlai Chen, Sophia Vincoff, Rio Watson, Tian Wang, Divya Srijay, Venkata Srikar Kavirayuni, Kseniia Kholina, Shrey Goel, Pranay Vure, Aniruddha J Desphande, Scott H Soderling, Matthew P DeLisa, Pranam Chatterjee
{"title":"<i>De Novo</i> Design of Peptide Binders to Conformationally Diverse Targets with Contrastive Language Modeling.","authors":"Suhaas Bhat, Kalyan Palepu, Lauren Hong, Joey Mao, Tianzheng Ye, Rema Iyer, Lin Zhao, Tianlai Chen, Sophia Vincoff, Rio Watson, Tian Wang, Divya Srijay, Venkata Srikar Kavirayuni, Kseniia Kholina, Shrey Goel, Pranay Vure, Aniruddha J Desphande, Scott H Soderling, Matthew P DeLisa, Pranam Chatterjee","doi":"10.1101/2023.06.26.546591","DOIUrl":"10.1101/2023.06.26.546591","url":null,"abstract":"<p><p>Designing binders to target undruggable proteins presents a formidable challenge in drug discovery, requiring innovative approaches to overcome the lack of putative binding sites. Recently, generative models have been trained to design binding proteins via three-dimensional structures of target proteins, but as a result, struggle to design binders to disordered or conformationally unstable targets. In this work, we provide a generalizable algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through Gaussian perturbation of the peptidic latent space of the ESM-2 protein language model, and subsequently screen these novel linear sequences for target-selective interaction activity via a CLIP-based contrastive learning architecture. By integrating these generative and discriminative steps, we create a <b>Pep</b>tide <b>Pr</b>ioritization via <b>CLIP</b> (<b>PepPrCLIP</b>) pipeline and validate highly-ranked, target-specific peptides experimentally, both as inhibitory peptides and as fusions to E3 ubiquitin ligase domains, demonstrating functionally potent binding and degradation of conformationally diverse protein targets <i>in vitro</i>. Overall, our design strategy provides a modular toolkit for designing short binding linear peptides to any target protein without the reliance on stable and ordered tertiary structure, enabling generation of programmable modulators to undruggable and disordered proteins such as transcription factors and fusion oncoproteins.</p>","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291000/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86671535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Future changes in the vertical structure of severe convective storm environments over the U.S. central Great Plains 美国中部大平原强对流风暴环境垂直结构的未来变化
IF 4.9 2区 地球科学
Journal of Climate Pub Date : 2024-07-09 DOI: 10.1175/jcli-d-23-0141.1
Isaac Davis, Funing Li, Daniel R. Chavas
{"title":"Future changes in the vertical structure of severe convective storm environments over the U.S. central Great Plains","authors":"Isaac Davis, Funing Li, Daniel R. Chavas","doi":"10.1175/jcli-d-23-0141.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0141.1","url":null,"abstract":"Abstract The effect of warming on severe convective storm potential is commonly explained in terms of changes in vertically-integrated (“bulk”) environmental parameters, such as CAPE and 0–6-km shear. However, such events are known to depend on details of the vertical structure of the thermodynamic and kinematic environment that can change independently of these bulk parameters. This work examines how warming may affect the complete vertical structure of these environments for fixed ranges of values of high CAPE and bulk shear, using data over the central Great Plains from two high-performing climate models (CNRM and MPI). To first order, projected changes in the vertical sounding structure is consistent between the two models: the environment warms approximately uniformly with height at constant relative humidity and the shear profile remains relatively constant. The boundary layer becomes slightly drier (−2–6% relative humidity) while the free troposphere becomes slightly moister (+1–3%), with a slight increase in moist static energy deficit aloft with stronger magnitude in CNRM. CNRM indicates enhanced low-level shear and storm-relative helicity associated with stronger hodograph curvature in the lowest 2 km, whereas MPI shows near zero change. Both models strongly underestimate shear below 1 km compared to ERA5, indicating large uncertainty in projecting subtle changes in the low-level flow structure in climate models. Evaluation of the net effect of these modest thermodynamic and kinematic changes on severe convective storm outcomes cannot be ascertained here but could be explored in simulation experiments.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"38 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of Local and Remote SST Warming on Summer Circulation Changes in the Western North Pacific 本地和远洋海温升高对北太平洋西部夏季环流变化的影响
IF 4.9 2区 地球科学
Journal of Climate Pub Date : 2024-07-09 DOI: 10.1175/jcli-d-23-0403.1
Chao-An Chen, Huang-Hsiung Hsu, Hsin-Chien Liang, Yu-Luen Chen, Ping-Gin Chiu, Chia-Ying Tu
{"title":"Impacts of Local and Remote SST Warming on Summer Circulation Changes in the Western North Pacific","authors":"Chao-An Chen, Huang-Hsiung Hsu, Hsin-Chien Liang, Yu-Luen Chen, Ping-Gin Chiu, Chia-Ying Tu","doi":"10.1175/jcli-d-23-0403.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0403.1","url":null,"abstract":"Abstract This study explores how future SST warming in remote ocean basins may affect the western North Pacific (WNP) wet season climate by applying a high-resolution atmospheric general circulation model to conduct a series of numerical experiments. A marked precipitation and tropical cyclone (TC) activity reduction, as well as enhanced anticyclonic circulation, in the WNP is projected in AMIP experiments forced by SST change in a future warming scenario. The sensitivity experiments reveal that various SST warming phenomena (e.g., in the global SST warming pattern, the tropical ocean belt, the Indian Ocean, tropical Atlantic, the subtropical northeast Pacific) and the increase of greenhouse gas concentration could weaken the precipitation, TC activity, and circulation. By contrast, the SST warming in the WNP and eastern equatorial Pacific have opposite and mixed effects, respectively, and tend to weakly offset the dominant influences of remote ocean warming. These results indicate that the WNP, being the epicenter of the global teleconnection of divergent and rotational flow, is susceptible to the influence of the SST warming in remote ocean basins. The remote forcing as projected in future scenarios would overwhelm the enhancing effect of local SST warming and weaken the circulation, convection, and TC activity in the WNP. These findings further the understanding of how the decreased precipitation and enhanced subtropical high in the WNP may be easily triggered by remote SST warming as revealed in the AMIP-type simulations. How this effect would be affected by air-sea coupling needs further investigation.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"26 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Future Changes of Extreme Precipitation and Related Atmospheric Conditions in East Asia under Global Warming Projected in Large Ensemble Climate Prediction Data 大型集合气候预测数据预测全球变暖下东亚极端降水及相关大气条件的未来变化
IF 4.9 2区 地球科学
Journal of Climate Pub Date : 2024-07-04 DOI: 10.1175/jcli-d-22-0924.1
Sicheng He, Tetsuya Takemi
{"title":"Future Changes of Extreme Precipitation and Related Atmospheric Conditions in East Asia under Global Warming Projected in Large Ensemble Climate Prediction Data","authors":"Sicheng He, Tetsuya Takemi","doi":"10.1175/jcli-d-22-0924.1","DOIUrl":"https://doi.org/10.1175/jcli-d-22-0924.1","url":null,"abstract":"Abstract Extreme precipitation is expected to pose a more severe threat to human society in the future. This work assessed the historical performance and future changes of extreme precipitation and related atmospheric conditions in a large ensemble climate prediction dataset, the database for Policy Decision-making for Future climate change (d4PDF), over East Asia. Compared with the TRMM and ERA5 datasets, the historical climate in d4PDF represents favorably the precipitation characteristics and the atmospheric conditions, although some differences are notable in the moisture, vertical motion, and cloud water fields. The future climate projection indicates that both the frequency and intensity of heavy precipitation events over East Asia increase compared with those in the present climate. However, when comparing the atmospheric conditions in the historical and future climates for the same precipitation intensity range, the future climate indicates smaller relatively humidity, weaker ascent, less cloud water content, and smaller temperature lapse rate, which negatively affect generating extreme precipitation events. The comparison of the precipitation intensity at the same amount of precipitable water between the historical and future climates indicates that extreme precipitation is weaker in the future, because of the more stabilized troposphere in the future. The general increase in extreme precipitation under future climate is primarily due to the enhanced increase in precipitable water in the higher temperature ranges, which counteracts the negative conditions of the stabilized troposphere.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PNA nonlinearity and ENSO transition asymmetry weaken PMM before La Niña onset PNA 非线性和厄尔尼诺/南方涛动过渡不对称削弱了拉尼娜现象开始前的 PMM
IF 4.9 2区 地球科学
Journal of Climate Pub Date : 2024-07-04 DOI: 10.1175/jcli-d-23-0769.1
Xiang Han, Tao Lian, Dake Chen, Ruikun Hu, Ting Liu, Qucheng Chu, Baosheng Li
{"title":"PNA nonlinearity and ENSO transition asymmetry weaken PMM before La Niña onset","authors":"Xiang Han, Tao Lian, Dake Chen, Ruikun Hu, Ting Liu, Qucheng Chu, Baosheng Li","doi":"10.1175/jcli-d-23-0769.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0769.1","url":null,"abstract":"Abstract The Pacific Meridional Mode (PMM) is one of dominant coupled modes in the northeastern tropical Pacific (NETP), characterized by a strip-like sea surface temperature (SST) anomalies spanning from Baja California to the central equatorial Pacific. While the majority of the El Niño events follow a positive PMM, only a few La Niña events are preceded by a negative PMM. Such an asymmetric activity of PMM before the onset of El Niño-Southern Oscillation (ENSO) was previously attributed to the inherent nonlinear response of the wind-evaporation-SST (WES) feedback to trade winds in NETP. Through data analysis and coupled model experiments, we pointed out that PMM is in fact a highly symmetric phenomenon, and the asymmetry of PMM before ENSO onset thus must be associated with ENSO. On the one hand, the nonlinear response of deep convection over the equator to symmetric ENSO forcing in the central equatorial Pacific permits a stronger Pacific North America (PNA) pattern in El Niño years than in La Niña years. On the other hand, since the majority of La Niña events are preceded by a sharp decay of an El Niño, the warm equatorial SST anomalies associated with the preceding El Niño provides another source to trigger PNA before La Niña onset. The two mechanisms modulate the trade winds and heat fluxes in NETP more heavily before La Niña onset than the El Niño onset, and equally contribute to PMM asymmetry before ENSO onset.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"23 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the variations and mechanisms of global land monsoons during Marine Isotope Stage 3 解密海洋同位素第三阶段全球陆地季风的变化和机制
IF 4.9 2区 地球科学
Journal of Climate Pub Date : 2024-07-03 DOI: 10.1175/jcli-d-23-0584.1
Jinzhe Zhang, Qing Yan, Nanxuan Jiang, Chuncheng Guo
{"title":"Deciphering the variations and mechanisms of global land monsoons during Marine Isotope Stage 3","authors":"Jinzhe Zhang, Qing Yan, Nanxuan Jiang, Chuncheng Guo","doi":"10.1175/jcli-d-23-0584.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0584.1","url":null,"abstract":"Abstract Marine Isotope Stage 3 (MIS 3) is characterized by significant millennial-scale climatic oscillations between cold stadials and mild interstadials, which presents a valuable case for understanding hydrological response to abrupt climate change. Through a set of coupled model simulations, our results broadly show an anti-phased interhemispheric change in land monsoonal precipitation during the present-day relative to MIS 3 interstadial and the stadial-interstadial transition, with a general decrease in the Northern Hemisphere but an increase in the Southern Hemisphere. The anti-phased pattern is largely caused by the change in orbital insolation during the present-day relative to MIS 3 interstadial whereas by the weakened Atlantic Meridional Overturning Circulation during the interstadial-stadial transition. However, there are obvious discrepancies in precipitation response and underlying mechanisms among individual monsoon domains and across different periods. Based on the moisture budget analysis, we indicate that the dynamic factor mainly explains the decreased monsoonal rainfall in the Northern Hemisphere during the present-day relative to the MIS 3 interstadial, whereas the thermodynamic term is largely responsible for the increased precipitation in the Southern Hemisphere. In contrast, the dynamic factor plays an important role in the variation of precipitation over all the monsoon zones from the MIS 3 interstadial to stadial states, with the thermodynamic term mainly contributing to the decreased tropical monsoonal precipitation in the colder Northern Hemisphere. Our results help improve the understanding of global monsoon variations under intermediate glacial climate conditions and shed light on their behaviors under potentially rapid climate change in the future.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"147 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subpolar North Atlantic mean state affects the response of the Atlantic Meridional Overturning Circulation to the North Atlantic Oscillation in CMIP6 models 北大西洋副极地平均状态影响 CMIP6 模型中大西洋经向翻转环流对北大西洋涛动的响应
IF 4.9 2区 地球科学
Journal of Climate Pub Date : 2024-07-03 DOI: 10.1175/jcli-d-23-0470.1
Annika Reintges, Jon I. Robson, Rowan Sutton, Stephen G. Yeager
{"title":"Subpolar North Atlantic mean state affects the response of the Atlantic Meridional Overturning Circulation to the North Atlantic Oscillation in CMIP6 models","authors":"Annika Reintges, Jon I. Robson, Rowan Sutton, Stephen G. Yeager","doi":"10.1175/jcli-d-23-0470.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0470.1","url":null,"abstract":"Abstract The Atlantic Meridional Overturning Circulation (AMOC) plays an important role in climate, transporting heat and salt to the subpolar North Atlantic. The AMOC’s variability is sensitive to atmospheric forcing, especially the North Atlantic Oscillation (NAO). Because AMOC observations are short, climate models are a valuable tool to study the AMOC’s variability. Yet, there are known issues with climate models, like uncertainties and systematic biases. To investigate this, pre-industrial control experiments from models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) are evaluated. There is large, but correlated, spread in the models’ subpolar gyre mean surface temperature and salinity. By splitting models into groups of either a warm-salty or cold-fresh subpolar gyre, it is shown that warm-salty models have a lower sea ice cover in the Labrador Sea and, hence, enable a larger heat loss during a positive NAO. Stratification in the Labrador Sea is also weaker in warm-salty models, such that the larger NAO-related heat loss can also affect greater depths. As a result, subsurface density anomalies are much stronger in the warm-salty models than in those that tend to be cold and fresh. As these anomalies propagate southward along the western boundary, they establish a zonal density gradient anomaly that promotes a stronger delayed AMOC response to the NAO in the warm-salty models. These findings demonstrate how model mean state errors are linked across variables and affect variability, emphasizing the need for improvement of the subpolar North Atlantic mean states in models.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"1 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interannual variation of summer compound hot and drought events in Xinjiang and its relationship with the North Atlantic sea surface temperature 新疆夏季复合高温干旱事件的年际变化及其与北大西洋海面温度的关系
IF 4.9 2区 地球科学
Journal of Climate Pub Date : 2024-07-03 DOI: 10.1175/jcli-d-24-0086.1
Xiaolu Zhang, Jiapeng Miao, Xiaoxin Wang, Botao Zhou
{"title":"Interannual variation of summer compound hot and drought events in Xinjiang and its relationship with the North Atlantic sea surface temperature","authors":"Xiaolu Zhang, Jiapeng Miao, Xiaoxin Wang, Botao Zhou","doi":"10.1175/jcli-d-24-0086.1","DOIUrl":"https://doi.org/10.1175/jcli-d-24-0086.1","url":null,"abstract":"Abstract Xinjiang suffers compound hot and drought events under global warming. However, less attention has been paid to physical mechanisms of the variability of compound hot and drought events in this region. This article investigates the interannual variation of summer (June–July–August) compound hot and drought events in Xinjiang and its relationship with the sea surface temperature (SST) over the North Atlantic. The results show that its first Empirical Orthogonal Function (EOF) mode features a spatially homogenous pattern. This mode is closely connected with the simultaneous meridional negative–positive–negative SST anomalies over the North Atlantic. The summer North Atlantic tripole SST anomalies can trigger a remarkable wave train extending from the North Atlantic to Eurasia, consequently inducing an anomalous high-pressure system over the Iran–Pamirs Plateau, which is conducive to the increase of air temperature from the surface to the upper troposphere over Xinjiang. The warmer troposphere further strengthens the western Asian subtropical meridional temperature gradient and thereby enhances the westerly wind to the north flank of the West Asian subtropical westerly jet (WASWJ). As a result, the WASWJ is displaced northward, which intensifies the sinking motion and prevents the water vapor transport to Xinjiang, leading to a decrease of precipitation in the target region. The higher temperature and less precipitation contribute to the occurrence of compound hot and drought events over Xinjiang. Numerical simulations based on the Community Atmospheric Model version 4 (CAM4) further confirm the relationship between the North Atlantic tripole SST anomalies and compound hot and drought events in Xinjiang during summer on the interannual time scale.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"4 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
No evidence of winter warming in Eurasia following large, low-latitude volcanic eruptions during the Last Millennium 没有证据表明欧亚大陆在上个千年发生大规模低纬度火山爆发后冬季变暖
IF 4.9 2区 地球科学
Journal of Climate Pub Date : 2024-07-02 DOI: 10.1175/jcli-d-23-0625.1
Ernesto Tejedor, Lorenzo M. Polvani, Nathan J. Steiger, Mathias Vuille, Jason E. Smerdon
{"title":"No evidence of winter warming in Eurasia following large, low-latitude volcanic eruptions during the Last Millennium","authors":"Ernesto Tejedor, Lorenzo M. Polvani, Nathan J. Steiger, Mathias Vuille, Jason E. Smerdon","doi":"10.1175/jcli-d-23-0625.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0625.1","url":null,"abstract":"Abstract We critically reexamine the question of whether volcanic eruptions cause surface warming over Eurasia in winter, in the light of recent modeling studies that have suggested internal variability may overwhelm any forced volcanic response, even for the very largest eruptions during the Common Era. Focusing on the Last Millennium, we combine model output, instrumental observations, tree-ring records, and ice cores to build a new temperature reconstruction that specifically targets the boreal winter season. We focus on 20 eruptions over the Last Millennium with volcanic stratospheric sulfur injections (VSSI) larger than the 1991 Pinatubo eruption. We find that only 7 of these 20 large events are followed by warm surface temperature anomalies over Eurasia in the first post-eruption winter. Examining the 13 events that show cold post-eruption anomalies we find no correlation between the amplitude of winter cooling and VSSI mass. We also find no evidence that the North Atlantic Oscillation is correlated with VSSI in winter, a key element of the proposed mechanism through which large low-latitude eruptions might cause winter warming over Eurasia. Furthermore, by inspecting individual eruptions rather than combining events into a superposed epoch analysis, we are able to reconcile our findings with those of previous studies. Analysis of two additional paleoclimatic datasets corroborates the lack of post-eruption Eurasian winter warming. Our findings, covering the entire Last Millennium, confirm the findings of most recent modeling studies, and offer important new evidence that large low-latitude eruptions are not, in general, followed by significant surface wintertime warming over Eurasia.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"12 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ocean Complexity Shapes Sea Surface Temperature Variability in a CESM2 Coupled Model Hierarchy 海洋复杂性塑造了 CESM2 耦合模型层次结构中的海表温度变异性
IF 4.9 2区 地球科学
Journal of Climate Pub Date : 2024-07-02 DOI: 10.1175/jcli-d-23-0621.1
Sarah M. Larson, Kay McMonigal, Yuko Okumura, Dillon Amaya, Antonietta Capotondi, Katinka Bellomo, Isla R. Simpson, Amy C. Clement
{"title":"Ocean Complexity Shapes Sea Surface Temperature Variability in a CESM2 Coupled Model Hierarchy","authors":"Sarah M. Larson, Kay McMonigal, Yuko Okumura, Dillon Amaya, Antonietta Capotondi, Katinka Bellomo, Isla R. Simpson, Amy C. Clement","doi":"10.1175/jcli-d-23-0621.1","DOIUrl":"https://doi.org/10.1175/jcli-d-23-0621.1","url":null,"abstract":"Abstract To improve understanding of ocean processes impacting monthly sea surface temperature (SST) variability, we analyze a Community Earth System Model version 2 hierarchy in which models vary only in their degree of ocean complexity. The most realistic ocean is a dynamical ocean model, as part of a fully coupled model (FCM). The next most realistic ocean, from a mechanically decoupled model (MDM), is like the FCM but excludes anomalous wind stress-driven ocean variability. The simplest ocean is a slab ocean model (SOM). Inclusion of a buoyancy coupled dynamic ocean as in the MDM, which includes temperature advection and vertical mixing absent in the SOM, leads to dampening of SST variance everywhere and reduced persistence of SST anomalies in the high latitudes and equatorial Pacific compared to the SOM. Inclusion of anomalous wind stress-driven ocean dynamics as in the FCM leads to higher SST variance and longer persistence timescales in most regions compared to the MDM. The net role of the dynamic ocean, as an overall dampener or amplifier of anomalous SST variance and persistence is regionally dependent. Notably, we find that efforts to reduce the complexity of the ocean models in the SOM and MDM configurations result in changes in the magnitude of the thermodynamic forcing of SST variability compared to the FCM. These changes, in part, stem from differences in the seasonally varying mixed layer depth and should be considered when attempting to quantify the relative contribution of certain ocean mechanisms to differences in SST variability between the models.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"78 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信