Subpolar North Atlantic mean state affects the response of the Atlantic Meridional Overturning Circulation to the North Atlantic Oscillation in CMIP6 models
IF 4.8 2区 地球科学Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Annika Reintges, Jon I. Robson, Rowan Sutton, Stephen G. Yeager
{"title":"Subpolar North Atlantic mean state affects the response of the Atlantic Meridional Overturning Circulation to the North Atlantic Oscillation in CMIP6 models","authors":"Annika Reintges, Jon I. Robson, Rowan Sutton, Stephen G. Yeager","doi":"10.1175/jcli-d-23-0470.1","DOIUrl":null,"url":null,"abstract":"Abstract The Atlantic Meridional Overturning Circulation (AMOC) plays an important role in climate, transporting heat and salt to the subpolar North Atlantic. The AMOC’s variability is sensitive to atmospheric forcing, especially the North Atlantic Oscillation (NAO). Because AMOC observations are short, climate models are a valuable tool to study the AMOC’s variability. Yet, there are known issues with climate models, like uncertainties and systematic biases. To investigate this, pre-industrial control experiments from models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) are evaluated. There is large, but correlated, spread in the models’ subpolar gyre mean surface temperature and salinity. By splitting models into groups of either a warm-salty or cold-fresh subpolar gyre, it is shown that warm-salty models have a lower sea ice cover in the Labrador Sea and, hence, enable a larger heat loss during a positive NAO. Stratification in the Labrador Sea is also weaker in warm-salty models, such that the larger NAO-related heat loss can also affect greater depths. As a result, subsurface density anomalies are much stronger in the warm-salty models than in those that tend to be cold and fresh. As these anomalies propagate southward along the western boundary, they establish a zonal density gradient anomaly that promotes a stronger delayed AMOC response to the NAO in the warm-salty models. These findings demonstrate how model mean state errors are linked across variables and affect variability, emphasizing the need for improvement of the subpolar North Atlantic mean states in models.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"1 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0470.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The Atlantic Meridional Overturning Circulation (AMOC) plays an important role in climate, transporting heat and salt to the subpolar North Atlantic. The AMOC’s variability is sensitive to atmospheric forcing, especially the North Atlantic Oscillation (NAO). Because AMOC observations are short, climate models are a valuable tool to study the AMOC’s variability. Yet, there are known issues with climate models, like uncertainties and systematic biases. To investigate this, pre-industrial control experiments from models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) are evaluated. There is large, but correlated, spread in the models’ subpolar gyre mean surface temperature and salinity. By splitting models into groups of either a warm-salty or cold-fresh subpolar gyre, it is shown that warm-salty models have a lower sea ice cover in the Labrador Sea and, hence, enable a larger heat loss during a positive NAO. Stratification in the Labrador Sea is also weaker in warm-salty models, such that the larger NAO-related heat loss can also affect greater depths. As a result, subsurface density anomalies are much stronger in the warm-salty models than in those that tend to be cold and fresh. As these anomalies propagate southward along the western boundary, they establish a zonal density gradient anomaly that promotes a stronger delayed AMOC response to the NAO in the warm-salty models. These findings demonstrate how model mean state errors are linked across variables and affect variability, emphasizing the need for improvement of the subpolar North Atlantic mean states in models.
期刊介绍:
The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.