Journal of Computational and Graphical Statistics最新文献

筛选
英文 中文
A Projection Approach to Local Regression with Variable-Dimension Covariates 使用变维度变量进行局部回归的投影方法
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-05-20 DOI: 10.1080/10618600.2024.2357636
Matthew J. Heiner, Garritt L. Page, Fernando Andrés Quintana
{"title":"A Projection Approach to Local Regression with Variable-Dimension Covariates","authors":"Matthew J. Heiner, Garritt L. Page, Fernando Andrés Quintana","doi":"10.1080/10618600.2024.2357636","DOIUrl":"https://doi.org/10.1080/10618600.2024.2357636","url":null,"abstract":"Incomplete covariate vectors are known to be problematic for estimation and inferences on model parameters, but their impact on prediction performance is less understood. We develop an imputation-f...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"43 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141091905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast calculation of Gaussian process multiple-fold cross-validation residuals and their covariances 高斯过程多重交叉验证残差及其协方差的快速计算
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-05-17 DOI: 10.1080/10618600.2024.2353633
David Ginsbourger, Cédric Schärer
{"title":"Fast calculation of Gaussian process multiple-fold cross-validation residuals and their covariances","authors":"David Ginsbourger, Cédric Schärer","doi":"10.1080/10618600.2024.2353633","DOIUrl":"https://doi.org/10.1080/10618600.2024.2353633","url":null,"abstract":"We generalize fast Gaussian process leave-one-out formulae to multiple-fold cross-validation, highlighting in turn the covariance structure of cross-validation residuals in simple and universal kri...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"53 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141091840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast Variational Inference for Bayesian Factor Analysis in Single and Multi-Study Settings 单项和多项研究中贝叶斯因子分析的快速变量推理
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-05-15 DOI: 10.1080/10618600.2024.2356173
Blake Hansen, Alejandra Avalos-Pacheco, Massimiliano Russo, Roberta De Vito
{"title":"Fast Variational Inference for Bayesian Factor Analysis in Single and Multi-Study Settings","authors":"Blake Hansen, Alejandra Avalos-Pacheco, Massimiliano Russo, Roberta De Vito","doi":"10.1080/10618600.2024.2356173","DOIUrl":"https://doi.org/10.1080/10618600.2024.2356173","url":null,"abstract":"Factors models are commonly used to analyze high-dimensional data in both single-study and multi-study settings. Bayesian inference for such models relies on Markov Chain Monte Carlo (MCMC) methods...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"51 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141092014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance is not enough: the story told by a Rashomon quartet 光有表演是不够的:罗生门四重奏讲述的故事
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-05-14 DOI: 10.1080/10618600.2024.2344616
Przemysław Biecek, Hubert Baniecki, Mateusz Krzyziński, Dianne Cook
{"title":"Performance is not enough: the story told by a Rashomon quartet","authors":"Przemysław Biecek, Hubert Baniecki, Mateusz Krzyziński, Dianne Cook","doi":"10.1080/10618600.2024.2344616","DOIUrl":"https://doi.org/10.1080/10618600.2024.2344616","url":null,"abstract":"The usual goal of supervised learning is to find the best model, the one that optimizes a particular performance measure. However, what if the explanation provided by this model is completely diffe...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"23 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141091911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast and Robust Low-Rank Learning over Networks: A Decentralized Matrix Quantile Regression Approach 网络上快速稳健的低级学习:分散式矩阵量化回归方法
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-05-09 DOI: 10.1080/10618600.2024.2353640
Nan Qiao, Canyi Chen
{"title":"Fast and Robust Low-Rank Learning over Networks: A Decentralized Matrix Quantile Regression Approach","authors":"Nan Qiao, Canyi Chen","doi":"10.1080/10618600.2024.2353640","DOIUrl":"https://doi.org/10.1080/10618600.2024.2353640","url":null,"abstract":"Decentralized low-rank learning is an active research domain with extensive practical applications. A common approach to producing low-rank and robust estimations is to employ a combination of the ...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"59 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variance-Reduced Stochastic Optimization for Efficient Inference of Hidden Markov Models 用于隐马尔可夫模型高效推理的减方差随机优化技术
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-05-07 DOI: 10.1080/10618600.2024.2350476
Evan Sidrow, Nancy Heckman, Alexandre Bouchard-Côté, Sarah M. E. Fortune, Andrew W. Trites, Marie Auger-Méthé
{"title":"Variance-Reduced Stochastic Optimization for Efficient Inference of Hidden Markov Models","authors":"Evan Sidrow, Nancy Heckman, Alexandre Bouchard-Côté, Sarah M. E. Fortune, Andrew W. Trites, Marie Auger-Méthé","doi":"10.1080/10618600.2024.2350476","DOIUrl":"https://doi.org/10.1080/10618600.2024.2350476","url":null,"abstract":"Hidden Markov models (HMMs) are popular models to identify a finite number of latent states from sequential data. However, fitting them to large data sets can be computationally demanding because m...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"23 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141092011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal inference meets random projections: a scalable test for log-concavity 通用推理与随机投影:对数凹性的可扩展测试
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-04-25 DOI: 10.1080/10618600.2024.2347338
Robin Dunn, Aditya Gangrade, Larry Wasserman, Aaditya Ramdas
{"title":"Universal inference meets random projections: a scalable test for log-concavity","authors":"Robin Dunn, Aditya Gangrade, Larry Wasserman, Aaditya Ramdas","doi":"10.1080/10618600.2024.2347338","DOIUrl":"https://doi.org/10.1080/10618600.2024.2347338","url":null,"abstract":"Shape constraints yield flexible middle grounds between fully nonparametric and fully parametric approaches to modeling distributions of data. The specific assumption of log-concavity is motivated ...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"44 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141091912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapper–type algorithms for complex data and relations 复杂数据和关系的映射器类型算法
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-04-22 DOI: 10.1080/10618600.2024.2343321
Paweł Dłotko, Davide Gurnari, Radmila Sazdanovic
{"title":"Mapper–type algorithms for complex data and relations","authors":"Paweł Dłotko, Davide Gurnari, Radmila Sazdanovic","doi":"10.1080/10618600.2024.2343321","DOIUrl":"https://doi.org/10.1080/10618600.2024.2343321","url":null,"abstract":"Mapper and Ball Mapper are Topological Data Analysis tools used for exploring high dimensional point clouds and visualizing scalar–valued functions on those point clouds. Inspired by open questions...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"52 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141091879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Plot is Worth a Thousand Tests: Assessing Residual Diagnostics with the Lineup Protocol 一张图胜过千百次测试:用排列规程评估残留诊断结果
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-04-22 DOI: 10.1080/10618600.2024.2344612
Weihao Li, Dianne Cook, Emi Tanaka, Susan VanderPlas
{"title":"A Plot is Worth a Thousand Tests: Assessing Residual Diagnostics with the Lineup Protocol","authors":"Weihao Li, Dianne Cook, Emi Tanaka, Susan VanderPlas","doi":"10.1080/10618600.2024.2344612","DOIUrl":"https://doi.org/10.1080/10618600.2024.2344612","url":null,"abstract":"Regression experts consistently recommend plotting residuals for model diagnosis, despite the availability of many numerical hypothesis test procedures designed to use residuals to assess problems ...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"53 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140632318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loss-Based Variational Bayes Prediction 基于损失的变异贝叶斯预测
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-04-16 DOI: 10.1080/10618600.2024.2341899
David T. Frazier, Rubén Loaiza-Maya, Gael M. Martin, Bonsoo Koo
{"title":"Loss-Based Variational Bayes Prediction","authors":"David T. Frazier, Rubén Loaiza-Maya, Gael M. Martin, Bonsoo Koo","doi":"10.1080/10618600.2024.2341899","DOIUrl":"https://doi.org/10.1080/10618600.2024.2341899","url":null,"abstract":"We propose a new approach to Bayesian prediction that caters for models with a large number of parameters and is robust to model misspecification. Given a class of high-dimensional (but parametric)...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"54 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信