Journal of Computational and Graphical Statistics最新文献

筛选
英文 中文
High-Dimensional Block Diagonal Covariance Structure Detection Using Singular Vectors 利用奇异矢量进行高维块对角线协方差结构检测
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-11-05 DOI: 10.1080/10618600.2024.2422985
Jan O. Bauer
{"title":"High-Dimensional Block Diagonal Covariance Structure Detection Using Singular Vectors","authors":"Jan O. Bauer","doi":"10.1080/10618600.2024.2422985","DOIUrl":"https://doi.org/10.1080/10618600.2024.2422985","url":null,"abstract":"The assumption of independent subvectors arises in many aspects of multivariate analysis. In most real-world applications, however, we lack prior knowledge about the number of subvectors and the sp...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"12 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-task Learning for Gaussian Graphical Regressions with High Dimensional Covariates 高斯图形回归与高维变量的多任务学习
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-10-31 DOI: 10.1080/10618600.2024.2421246
Jingfei Zhang, Yi Li
{"title":"Multi-task Learning for Gaussian Graphical Regressions with High Dimensional Covariates","authors":"Jingfei Zhang, Yi Li","doi":"10.1080/10618600.2024.2421246","DOIUrl":"https://doi.org/10.1080/10618600.2024.2421246","url":null,"abstract":"Gaussian graphical regression is a powerful approach for regressing the precision matrix of a Gaussian graphical model on covariates, which permits the response variables and covariates to outnumbe...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"5 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Subsampling for Data Streams with Measurement Constrained Categorical Responses 测量受限分类响应数据流的最优子采样
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-10-31 DOI: 10.1080/10618600.2024.2421990
Jun Yu, Zhiqiang Ye, Mingyao Ai, Ping Ma
{"title":"Optimal Subsampling for Data Streams with Measurement Constrained Categorical Responses","authors":"Jun Yu, Zhiqiang Ye, Mingyao Ai, Ping Ma","doi":"10.1080/10618600.2024.2421990","DOIUrl":"https://doi.org/10.1080/10618600.2024.2421990","url":null,"abstract":"High-velocity, large-scale data streams have become pervasive. Frequently, the associated labels for such data prove costly to measure and are not always available upfront. Consequently, the analys...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"87 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Latent Markov time-interaction processes 潜在马尔可夫时间交互过程
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-10-31 DOI: 10.1080/10618600.2024.2421984
Rosario Barone, Alessio Farcomeni, Maura Mezzetti
{"title":"Latent Markov time-interaction processes","authors":"Rosario Barone, Alessio Farcomeni, Maura Mezzetti","doi":"10.1080/10618600.2024.2421984","DOIUrl":"https://doi.org/10.1080/10618600.2024.2421984","url":null,"abstract":"We present parametric and semiparametric latent Markov time-interaction processes, that are point processes where the occurrence of an event can increase or reduce the probability of future events....","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"35 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterogeneous functional regression for subgroup analysis 用于分组分析的异质功能回归
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-10-28 DOI: 10.1080/10618600.2024.2414113
Yeqing Zhou, Fei Jiang
{"title":"Heterogeneous functional regression for subgroup analysis","authors":"Yeqing Zhou, Fei Jiang","doi":"10.1080/10618600.2024.2414113","DOIUrl":"https://doi.org/10.1080/10618600.2024.2414113","url":null,"abstract":"With ever increasing number of features of modern datasets, data heterogeneity is gradually becoming the norm rather than the exception. Whereas classical regressions usually assume all the samples...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"61 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-label Random Subspace Ensemble Classification1 多标签随机子空间集合分类1
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-10-28 DOI: 10.1080/10618600.2024.2421248
Fan Bi, Jianan Zhu, Yang Feng
{"title":"Multi-label Random Subspace Ensemble Classification1","authors":"Fan Bi, Jianan Zhu, Yang Feng","doi":"10.1080/10618600.2024.2421248","DOIUrl":"https://doi.org/10.1080/10618600.2024.2421248","url":null,"abstract":"In this work, we develop a new ensemble learning framework, multi-label Random Subspace Ensemble (mRaSE), for multi-label classification. Given a base classifier (e.g., multinomial logistic regress...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"62 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sampling random graphs with specified degree sequences 对具有指定度序列的随机图形进行采样
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-10-24 DOI: 10.1080/10618600.2024.2418817
Upasana Dutta, Bailey K. Fosdick, Aaron Clauset
{"title":"Sampling random graphs with specified degree sequences","authors":"Upasana Dutta, Bailey K. Fosdick, Aaron Clauset","doi":"10.1080/10618600.2024.2418817","DOIUrl":"https://doi.org/10.1080/10618600.2024.2418817","url":null,"abstract":"The configuration model is a standard tool for uniformly generating random graphs with a specified degree sequence, and is often used as a null model to evaluate how much of an observed network’s s...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"27 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distortion corrected kernel density estimator on Riemannian manifolds 黎曼流形上的失真校正核密度估算器
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-10-24 DOI: 10.1080/10618600.2024.2415543
Fan Cheng, Rob J Hyndman, Anastasios Panagiotelis
{"title":"Distortion corrected kernel density estimator on Riemannian manifolds","authors":"Fan Cheng, Rob J Hyndman, Anastasios Panagiotelis","doi":"10.1080/10618600.2024.2415543","DOIUrl":"https://doi.org/10.1080/10618600.2024.2415543","url":null,"abstract":"Manifold learning obtains a low-dimensional representation of an underlying Riemannian manifold supporting high-dimensional data. Kernel density estimates of the low-dimensional embedding with a fi...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"212 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Qini Curves for Multi-Armed Treatment Rules 多臂处理规则的基尼曲线
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-10-24 DOI: 10.1080/10618600.2024.2418820
Erik Sverdrup, Han Wu, Susan Athey, Stefan Wager
{"title":"Qini Curves for Multi-Armed Treatment Rules","authors":"Erik Sverdrup, Han Wu, Susan Athey, Stefan Wager","doi":"10.1080/10618600.2024.2418820","DOIUrl":"https://doi.org/10.1080/10618600.2024.2418820","url":null,"abstract":"Qini curves have emerged as an attractive and popular approach for evaluating the benefit of data-driven targeting rules for treatment allocation. We propose a generalization of the Qini curve to m...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"10 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Sampling From the Watson Distribution in Arbitrary Dimensions 从任意维度的沃森分布中高效取样
IF 2.4 2区 数学
Journal of Computational and Graphical Statistics Pub Date : 2024-10-23 DOI: 10.1080/10618600.2024.2416521
Lukas Sablica, Kurt Hornik, Josef Leydold
{"title":"Efficient Sampling From the Watson Distribution in Arbitrary Dimensions","authors":"Lukas Sablica, Kurt Hornik, Josef Leydold","doi":"10.1080/10618600.2024.2416521","DOIUrl":"https://doi.org/10.1080/10618600.2024.2416521","url":null,"abstract":"In this paper, we present two efficient methods for sampling from the Watson distribution in arbitrary dimensions. The first method adapts the rejection sampling algorithm from Kent et al. (2018), ...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"105 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信