Yizhen Xu, Joseph Hogan, Michael Daniels, Rami Kantor, Ann Mwangi
{"title":"多项式概率贝叶斯加性回归树的增量取样器","authors":"Yizhen Xu, Joseph Hogan, Michael Daniels, Rami Kantor, Ann Mwangi","doi":"10.1080/10618600.2024.2388605","DOIUrl":null,"url":null,"abstract":"The multinomial probit (MNP) (Imai and van Dyk, 2005) framework is based on a multivariate Gaussian latent structure, allowing for natural extensions to multilevel modeling. Unlike multinomial logi...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"158 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmentation Samplers for Multinomial Probit Bayesian Additive Regression Trees\",\"authors\":\"Yizhen Xu, Joseph Hogan, Michael Daniels, Rami Kantor, Ann Mwangi\",\"doi\":\"10.1080/10618600.2024.2388605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multinomial probit (MNP) (Imai and van Dyk, 2005) framework is based on a multivariate Gaussian latent structure, allowing for natural extensions to multilevel modeling. Unlike multinomial logi...\",\"PeriodicalId\":15422,\"journal\":{\"name\":\"Journal of Computational and Graphical Statistics\",\"volume\":\"158 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Graphical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10618600.2024.2388605\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Graphical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10618600.2024.2388605","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
多项式概率(MNP)(Imai 和 van Dyk,2005 年)框架基于多变量高斯潜在结构,可自然扩展到多层次建模。与多项式概率(MNP)不同的是,多项式概率(MNP)是一种多变量高斯潜在结构。
Augmentation Samplers for Multinomial Probit Bayesian Additive Regression Trees
The multinomial probit (MNP) (Imai and van Dyk, 2005) framework is based on a multivariate Gaussian latent structure, allowing for natural extensions to multilevel modeling. Unlike multinomial logi...
期刊介绍:
The Journal of Computational and Graphical Statistics (JCGS) presents the very latest techniques on improving and extending the use of computational and graphical methods in statistics and data analysis. Established in 1992, this journal contains cutting-edge research, data, surveys, and more on numerical graphical displays and methods, and perception. Articles are written for readers who have a strong background in statistics but are not necessarily experts in computing. Published in March, June, September, and December.