{"title":"Knock-Out of ACY-1 Like Gene in Spodoptera litura Supports the Notion that FACs Improve Nitrogen Metabolism.","authors":"Tsuyoshi Maruoka, Yu Shirai, Takaaki Daimon, Rei Fujii, Masako Dannoura, Irmgard Seidl-Adams, Naoki Mori, Naoko Yoshinaga","doi":"10.1007/s10886-024-01512-y","DOIUrl":"10.1007/s10886-024-01512-y","url":null,"abstract":"<p><p>Volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and N-linolenoyl-L-glutamine were originally identified in the regurgitant of Spodoptera exigua larvae. These fatty acid amino acid conjugates (FACs) are known to be elicitors that induce plants to release volatile compounds which in turn attract natural enemies of the larvae such as parasitic wasps. FAC concentrations are regulated by enzymatic biosynthesis and hydrolysis in the intestine of Lepidoptera larvae. It has been proposed that FAC metabolism activates glutamine synthetase and plays an important role in nitrogen metabolism in larvae. In this study, we identified candidate genes encoding a FACs hydrolase in Spodoptera litura using genomic information of various related lepidopteran species in which FACs hydrolases have been reported. We analyzed the importance of FAC hydrolysis on caterpillar performance with CRISPR/Cas9 knock outs. Larvae of strains with an inactive FACs hydrolase excreted FACs in their feces. They absorbed 30% less nitrogen from the diet compared to WT caterpillars resulting in a reduction of their body weight of up to 40% compared to wild type caterpillars. These results suggest that the hydrolysis of FACs is an important metabolism for insects and that FACs are important for larval growth.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"573-580"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493783/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samara M M Andrade, Quentin Guignard, Sandy M Smith, Jeremy D Allison
{"title":"Confirmation that Monochamol is a Male Produced Aggregation-Sex Pheromone for Monochamus maculosus Haldeman (Coleoptera: Cerambycidae).","authors":"Samara M M Andrade, Quentin Guignard, Sandy M Smith, Jeremy D Allison","doi":"10.1007/s10886-024-01530-w","DOIUrl":"10.1007/s10886-024-01530-w","url":null,"abstract":"<p><p>The recognition of cerambycids as frequent and damaging invaders led to an increase in the interest in the chemical ecology of the group with the identification of pheromones and pheromone-like attractants for well over 100 species. Pheromone components of the Cerambycidae are often phylogenetically conserved, with a single compound serving as a pheromone component for several related species. In the subfamily Lamiinae, the compound 2-(undecyloxy)ethanol (monochamol) has been identified as an aggregation-sex pheromone for several species of the genus Monochamus. In other species, including Monochamus maculosus Haldeman, field trials have demonstrated that monochamol is a pheromone attractant, but at that point it was still unknown as to whether it was a pheromone for this species. Here we report the identification, and laboratory and field trials of a pheromone component produced by adult male M. maculosus. Chemical analyses of headspace volatile collections sampled from field collected beetles of both sexes revealed the presence of one male-specific compound that was identified as 2-(undecyloxy)ethanol. Electroantennography analyses showed that monochamol elicited responses from the antennae of female beetles. Traps baited with monochamol in the field captured M. maculosus adults of both sexes corroborating the identification of monochamol as the sex-aggregation pheromone of this species. The attractivity of monochamol to adult M. maculosus in our field trapping experiment was synergized by the addition of the host volatile α-pinene.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"409-418"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yogita P Patil, Shyam K Gawari, Vitthal T Barvkar, Rakesh S Joshi
{"title":"Tyramine-Mediated Hyperactivity Modulates the Dietary Habits in Helicoverpa armigera.","authors":"Yogita P Patil, Shyam K Gawari, Vitthal T Barvkar, Rakesh S Joshi","doi":"10.1007/s10886-024-01515-9","DOIUrl":"10.1007/s10886-024-01515-9","url":null,"abstract":"<p><p>Helicoverpa armigera exhibits extensive variability in feeding habits and food selection. Neuronal regulation of H. armigera feeding behavior is primarily influenced by biogenic amines such as Tyramine (TA) and Octopamine (OA). The molecular responses of H. armigera to dietary challenges in the presence of TA or OA have yet to be studied. This investigation dissects the impact of OA and TA on H. armigera feeding choices and behaviors under non-host nutritional stress. It has been observed that feeding behavior remains unaltered during the exogenous administration of OA and TA through an artificial diet (AD). Ingestion of higher OA or TA concentrations leads to increased mortality. OA and TA treatment in combination with host and non-host diets results in the induction of feeding and higher locomotion toward food, particularly in the case of TA treatment. Increased expression of markers, prominin-like, and tachykinin-related peptide receptor-like transcripts further assessed increased locomotion activity. Insects subjected to a non-host diet with TA treatment exhibited increased feeding and overexpression of the feeding indicator, the Neuropeptide F receptor, and the feeding regulator, Sulfakinin, compared with other conditions. Expression of sensation and biogenic amine synthesis genesis elevated in insects fed a non-host diet in combination with OA or TA. Metabolomics analysis revealed a decreased concentration of the feeding behavior elicitor, dopamine, in insects fed a non-host diet containing TA. This work highlights the complex interplay between biogenic amine functions during dietary stress and suggests the role of tyramine in feeding promotion under stressed conditions.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"453-464"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cindy Perkovich, Anthony L Witcher, Jason B Oliver, Karla M Addesso
{"title":"Herbicide Stress Inducesbeetle Oviposition on Red Maples.","authors":"Cindy Perkovich, Anthony L Witcher, Jason B Oliver, Karla M Addesso","doi":"10.1007/s10886-024-01539-1","DOIUrl":"10.1007/s10886-024-01539-1","url":null,"abstract":"<p><p>Flatheaded borers (FHB; Chrysobothris spp.), are woodboring-beetles that lay their eggs in the bark and cambium of deciduous trees in North America. Females often target stressed host-plants for oviposition. The reason why is unknown; however, stressed plants often suffer various induced phytochemical changes that may enhance larval infestation success depending on the stressor such as induced upregulation of defenses, reallocation of nutrients, and changes to volatile organic compound (VOC) emissions. To understand attraction of FHB to specific stress-induced changes, we analyzed phytochemical changes associated with stress treatments and attractiveness maple trees to FHB. Trees were stressed by: (1) chemical stress (pelargonic acid herbicide), (2) physical stress (physically removing leaves), and (3) physical stress (removing portions of bark near the root crown). After reflush of defoliated trees, bark tissues where FHB larvae feed were analyzed for nutritional changes (carbon and nitrogen), anti-nutritive changes (polyphenols and tannins) and emissions of foliar VOCs. At the end of the growing season, trees were assessed for FHB larval presence and oviposition attempts. There were more larvae and oviposition attempts on trees stressed by herbicide application. Compared to other treatments, herbicide-stressed trees had greater nitrogen and total polyphenol concentrations. Greater nitrogen may play a role in the fitness of feeding larvae, and the greater polyphenol concentration may stimulate female oviposition in the herbicide stressed trees. Females may be able to locate the herbicide-stressed trees by using volatile cues such as increases in limonene, α-farnesene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and hexenyl acetate.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"515-528"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493808/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Male-Specific Substances Possibly Contributing to Nuptial Flight of the Japanese Carpenter Ant Camponotus japonicus (Hymenoptera: Formicidae).","authors":"Shunya Habe, Shigeru Matsuyama, Natsumi Kanzaki, Keiko Hamaguchi, Mamiko Ozaki, Toshiharu Akino","doi":"10.1007/s10886-024-01548-0","DOIUrl":"https://doi.org/10.1007/s10886-024-01548-0","url":null,"abstract":"<p><p>The nuptial flight of ants usually occurs during certain periods of the year. Alate females and males fly out of their nests to mate simultaneously. In the genus Camponotus, sex-specific chemicals are deposited in the male head; however, their roles in nuptial flight have not yet been clarified. This study aimed to elucidate the functions of male-specific chemicals in the Japanese carpenter ant Camponotus japonicus. First, we identified three chemicals characteristic to the male - methyl salicylate (MS), methyl 6-methylsalicylate (MMS), and methyl anthranilate (MA) - all of which triggered electroantennogram (EAG) responses in both alate males and females. As the relative content of MS was insufficient for GC comparison, we investigated the quantitative changes of MMS and MA in the male head capsules before and after flight under laboratory conditions. The amounts of both compounds were significantly reduced after flight, which suggested that males secrete them during flight. Thereafter, a field trap experiment was conducted in three fields of the Kyoto Prefecture, Japan, during the nuptial flight season in 2021 using MMS and MA as baits. The number of captured alate males was significantly higher than that of the females, suggesting that these compounds primarily attracted males rather than females. Considering the field conditions, if the local concentration of these chemicals is increased by male aggregation, females may be attracted as they also showed EAG responses. Our findings represent a first step toward understanding chemically mediated male lek formation during the process of male aggregation syndrome in this species.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melissa Díaz-Morales, Mohammed A. Khallaf, Regina Stieber, Ibrahim Alali, Bill S. Hansson, Markus Knaden
{"title":"The Ortholog Receptor Or67d in Drosophila Bipectinata is able to Detect Two Different Pheromones","authors":"Melissa Díaz-Morales, Mohammed A. Khallaf, Regina Stieber, Ibrahim Alali, Bill S. Hansson, Markus Knaden","doi":"10.1007/s10886-024-01545-3","DOIUrl":"https://doi.org/10.1007/s10886-024-01545-3","url":null,"abstract":"<p>Sex pheromones play a crucial role in species recognition and reproductive isolation. Despite being largely species-specific in drosophilids, the mechanisms underlying pheromone detection, production, and their influence on mating behavior remain poorly understood. Here, we compare the chemical profiles of <i>Drosophila bipectinata</i> and <i>D. melanogaster</i>, the mating behaviors in both species, as well as the tuning properties of Or67d receptors, which are expressed by neurons in antennal trichoid sensilla at1. Through single sensillum recordings, we demonstrate that the <i>D. bipectinata</i> Or67d-ortholog exhibits similar sensitivity to <i>cis</i>-vaccenyl acetate (<i>c</i>VA) as compared to <i>D.</i> melanogaster but in addition also responds uniquely to (Z)-11-eicosen-1-yl-acetate (Z11-20:Ac), a compound exclusively produced by <i>D. bipectinata</i> males. Through courtship behavior assays we found that, surprisingly, perfuming the flies with Z11-20:Ac did not reveal any aphrodisiacal or anti-aphrodisiacal effects in mating assays. The behavioral relevance of at1 neuron channels in <i>D. bipectinata</i> compared to <i>D. melanogaster</i> seems to be restricted to its formerly shown function as an aggregation pheromone. Moreover, the non-specific compound cVA affected copulation negatively in <i>D. bipectinata</i> and could potentially act as a premating isolation barrier. As both ligands of Or67d seem to govern different behaviors in <i>D. bipectinata</i>, additional neurons detecting at least one of those compounds might be involved. These results underscore the complexity of chemical signaling in species recognition and raise intriguing questions about the evolutionary implications of pheromone detection pathways in <i>Drosophila</i> species.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":"75 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asifur Rahman-Soad, Ludwig Skuras, Andreas Reinecke, Martti Varama, Monika Hilker
{"title":"Sawfly Sex Pheromones: Analysis of Their Impact on Pine Odor Attractive to Egg Parasitoids","authors":"Asifur Rahman-Soad, Ludwig Skuras, Andreas Reinecke, Martti Varama, Monika Hilker","doi":"10.1007/s10886-024-01547-1","DOIUrl":"https://doi.org/10.1007/s10886-024-01547-1","url":null,"abstract":"<p><i>Pinus sylvestris</i> trees are known to efficiently defend themselves against eggs of the herbivorous sawfly <i>Diprion pini</i>. Their direct defense against eggs is primable by prior exposure to the sex pheromones of this species and their indirect defense involves attraction of egg parasitoids by egg-induced pine needle odor. But it is unknown whether exposure of pine to <i>D. pini</i> sex pheromones also affects pine indirect defense against sawfly eggs. In this study, we investigated the influence of exposure of <i>P. sylvestris</i> trees to the sex pheromones of <i>D. pini</i> on indirect defense mediated by egg parasitoids. Behavioral assays with <i>Closterocerus ruforum</i>, a key parasitoid of sawfly eggs, revealed no significant attraction to odor from egg-free pines pre-exposed to pheromones. Chemical analyses of odor from egg-free pines showed no pheromone-induced change in the emission rates of the known key terpenoids promoting parasitoid attraction. Further comparative analyses of odor from egg-laden pines pre-exposed to the sex pheromones and of odor from egg-laden pines unexposed to pheromones neither revealed significant differences in the emission rates of terpenoids relevant for parasitoid attraction. The results suggest that a pheromone-induced or pheromone-primed, egg-induced pine indirect defense seems to be redundant in addition to the known pheromone-primable pine direct defense against the eggs and the known egg-inducible indirect defense.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":"17 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intraspecific Variation in the Alkaloids of Adalia decempunctata (Coleoptera, Coccinellidae): Sex, Reproduction and Colour Pattern Polymorphism","authors":"Muhammad Aslam, Oldřich Nedvěd, John J. Sloggett","doi":"10.1007/s10886-024-01544-4","DOIUrl":"https://doi.org/10.1007/s10886-024-01544-4","url":null,"abstract":"<p>In this paper, we examine intraspecific variation in the quantity of alkaloid chemical defence in field collected individuals of the polymorphic ladybird beetle <i>Adalia decempunctata</i> (10-spot ladybird). Like its more widely studied relative <i>Adalia bipunctata</i> (2-spot ladybird), <i>A. decempunctata</i> possesses the alkaloids adaline and adalinine, which are, respectively, the major and minor alkaloids of <i>A. bipunctata</i>. We focused especially on alkaloid concentration in relation to colour pattern morph, sex, and the relationship between female and egg parameters. There was a marked sexual dimorphism in the balance of the two alkaloids, with adaline predominating in females and adalinine predominating in males: in males, on average, over 70% of total alkaloid was adalinine. Females had a lower proportion of adalinine (< 10%) than their eggs (> 15%) and relationships between egg alkaloid and female alkaloid or fecundity were weak or non-existent. Colour pattern morph had a borderline (although not) significant relationship with adaline concentration and total alkaloid concentration, which could be further explored with laboratory reared individuals. The sexual dimorphism in alkaloid content, which seems likely due to differences in synthesis, might be related to their relative costs to the two sexes and might provide insight into the evolution of alkaloid diversity in ladybirds.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":"31 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Key Phytochemical Cue Camphor Is a Promising Lure for Traps Monitoring the New Monophagous Camphor Tree Borer Pagiophloeus tsushimanus (Coleoptera: Curculionidae).","authors":"Cong Chen, Tian Xu, Shouyin Li, Mingyu Xue, Yadi Deng, Binqi Fan, Chufeng Yang, Dejun Hao","doi":"10.1007/s10886-024-01537-3","DOIUrl":"https://doi.org/10.1007/s10886-024-01537-3","url":null,"abstract":"<p><p>The landscape plant, Cinnamomum camphora, is a broad-spectrum insect-repelling tree species, mainly due to a diversity of terpenoids, such as camphor. Despite its formidable chemical defenses, C. camphora is easily attacked and invaded by a monophagous weevil pest, Pagiophloeus tsushimanus. Deciphering the key olfactory signal components regulating host preference could facilitate monitoring and control strategies for this pest. Herein, two host volatiles, camphor and ocimene, induced GC-EAD/EAG reactions in both male and female adult antennae. Correspondingly, Y-tube olfactometer assays showed that the two compounds were attractive to both male and female adults. In field assays, a self-made trap device baited with 5 mg dose d(+)-camphor captured significantly more P. tsushimanus adults than isopropanol solvent controls without sexual bias. The trunk gluing trap device baited with bait can capture adults, but the number was significantly less than that of the self-made trap device and adults often fell after struggling. The cross baffle trap device never trapped adults. Neither ocimene nor isopropanol solvent control captured adults. When used in combination, ocimene did not enhance the attraction of d(+)-camphor to both female and male adults. These results indicate that d(+)-camphor is a key active compound of P. tsushimanus adults for host location. The combination of the host-volatile lure based on d(+)-camphor and the self-made trapping device is promising to monitor and provide an eco-friendly control strategy for this novel pest P. tsushimanus in C. camphora plantations.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kairomonal Effect of Hexane Extracts of Corcyra cephalonica and Spodoptera frugiperda on the Parasitizing Activity of Trichogramma pretiosum.","authors":"Thokchom Tullika, Kennedy Ningthoujam","doi":"10.1007/s10886-024-01534-6","DOIUrl":"https://doi.org/10.1007/s10886-024-01534-6","url":null,"abstract":"<p><p>Egg parasitoids, particularly Trichogrammatidae, play a crucial role in global biocontrol efforts. Their behavior is influenced by chemicals emitted by their hosts, such as kairomones. Among them, Trichogramma pretiosum (Riley) (Hym.; Trichogrammatidae) shows promise as a biocontrol agent on destructive Fall Armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lep.; Noctuidae). Given the invasiveness and widespread impact of FAW, early-stage prevention in the field is imperative. This study aimed to assess the potential of host insects viz.,Corcyra cephalonica (Stainton) (Lep.; Pyralidae) and S. frugiperda kairomones in optimizing the performance of T. pretiosum while parasitizing S. frugiperda. The top two hexane extracts from each host insect were also sent to JNU, AIRF in New Delhi for detailed GC-MS analysis. A four-armed olfactometer was developed to track the movements of T. pretiosum and validated with olfactory cues. Laboratory bioassays revealed that extracts from C. cephalonica and S. frugiperda eggs and moths effectively enhanced the performance of T. pretiosum. Optimal concentrations were determined through Petri dish bioassays, with C1 (10%) concentration of C. cephalonica eggs extract showing the highest Parasitoid Activity Index (PAI), percent parasitization, and adult emergence. Meanwhile, C2 (1%) concentration of S. frugiperda female extract exhibited the highest parasitization percentage and adult emergence. Further assessments in a polyhouse setting demonstrated that treated egg cards positioned 1 m from the release point achieved the highest mean percentage parasitization. Chemical composition analysis via GC-MS revealed that distinctive hydrocarbon and alcohol profiles in the extracts, suggesting their potential for manipulating parasitoid activity in biocontrol efforts. In the S. frugiperda female extract, 12 hydrocarbons and 3 alcohol groups were identified, with tetracontane as the predominant hydrocarbon compound followed by octane, heneicosane, and others. Meanwhile, the C. cephalonica egg extract displayed 9 hydrocarbons and 1 alcohol group, with dodecane leading in area percentage among the hydrocarbons followed by decane, nonane and others. The outputs of current study highlighted that T. pretiosum's utilization of kairomones from C. cephalonica and S. frugiperda, enhancing its search behavior for host eggs. The identification and synthesis of these kairomonal compounds have the potential to revolutionize pest management, emphasizing the role of kairomones in empowering natural predators and parasitoids for sustainable agriculture.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}