Neglected Microbes in Floral Nectar: Influence of Filamentous Fungi on Nectar Scent and Parasitoid Olfactory Responses.

IF 2.2 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jay Darryl L Ermio, Ezio Peri, Salvatore Guarino, Patrizia Bella, Stefano Colazza, Bart Lievens, Michael Rostás, Antonino Cusumano
{"title":"Neglected Microbes in Floral Nectar: Influence of Filamentous Fungi on Nectar Scent and Parasitoid Olfactory Responses.","authors":"Jay Darryl L Ermio, Ezio Peri, Salvatore Guarino, Patrizia Bella, Stefano Colazza, Bart Lievens, Michael Rostás, Antonino Cusumano","doi":"10.1007/s10886-025-01586-2","DOIUrl":null,"url":null,"abstract":"<p><p>Floral nectar is a sugar-rich resource which is ubiquitously inhabited by a wide array of microorganisms. Fermentation by nectar-inhabiting microbes can alter several nectar traits, including nectar scent, via changes in the blend of volatile organic compounds (VOCs). Although there is growing evidence on how yeasts and bacteria influence the foraging behavior of flower-visiting insects, the potential role of other microbial taxa that can colonize nectar has been largely neglected. In this study, we investigated how filamentous fungi isolated from the floral nectar of buckwheat, Fagopyrum esculentum, affect nectar scent and the olfactory responses of two co-occurring egg parasitoid species, Trissolcus basalis and Ooencyrtus telenomicida. Among nectar-feeding insects, adult parasitoids are common visitors of flowers as they depend on sugar-rich resources to satisfy their energetic and nutritional needs. In olfactometer assays, we found that nectar fermentation by two out of six fungal strains, namely Cladosporium sp. SAAF 22.2.11 and Cladosporium sp. SAAF 22.3.29, elicited a behavioral response in the egg parasitoid species when tested against non-fermented nectar. In particular, O. telenomicida displayed positive olfactory responses to both Cladosporium-fermented nectars, while T. basalis only responded positively to nectar fermented by Cladosporium sp. SAAF 22.2.11. Chemical investigations revealed significant differences in the VOC blends across all six fungus-fermented nectars, despite a partial overlap between the blends emitted by attractive versus non-attractive nectars. Altogether, these findings highlight previously unexplored interactions between flower-visiting insects and flower-associated microbes, broadening our understanding beyond the well-studied influences of yeasts and bacteria.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":"51 2","pages":"33"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903542/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-025-01586-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Floral nectar is a sugar-rich resource which is ubiquitously inhabited by a wide array of microorganisms. Fermentation by nectar-inhabiting microbes can alter several nectar traits, including nectar scent, via changes in the blend of volatile organic compounds (VOCs). Although there is growing evidence on how yeasts and bacteria influence the foraging behavior of flower-visiting insects, the potential role of other microbial taxa that can colonize nectar has been largely neglected. In this study, we investigated how filamentous fungi isolated from the floral nectar of buckwheat, Fagopyrum esculentum, affect nectar scent and the olfactory responses of two co-occurring egg parasitoid species, Trissolcus basalis and Ooencyrtus telenomicida. Among nectar-feeding insects, adult parasitoids are common visitors of flowers as they depend on sugar-rich resources to satisfy their energetic and nutritional needs. In olfactometer assays, we found that nectar fermentation by two out of six fungal strains, namely Cladosporium sp. SAAF 22.2.11 and Cladosporium sp. SAAF 22.3.29, elicited a behavioral response in the egg parasitoid species when tested against non-fermented nectar. In particular, O. telenomicida displayed positive olfactory responses to both Cladosporium-fermented nectars, while T. basalis only responded positively to nectar fermented by Cladosporium sp. SAAF 22.2.11. Chemical investigations revealed significant differences in the VOC blends across all six fungus-fermented nectars, despite a partial overlap between the blends emitted by attractive versus non-attractive nectars. Altogether, these findings highlight previously unexplored interactions between flower-visiting insects and flower-associated microbes, broadening our understanding beyond the well-studied influences of yeasts and bacteria.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Ecology
Journal of Chemical Ecology 环境科学-生化与分子生物学
CiteScore
5.10
自引率
4.30%
发文量
58
审稿时长
4 months
期刊介绍: Journal of Chemical Ecology is devoted to promoting an ecological understanding of the origin, function, and significance of natural chemicals that mediate interactions within and between organisms. Such relationships, often adaptively important, comprise the oldest of communication systems in terrestrial and aquatic environments. With recent advances in methodology for elucidating structures of the chemical compounds involved, a strong interdisciplinary association has developed between chemists and biologists which should accelerate understanding of these interactions in nature. Scientific contributions, including review articles, are welcome from either members or nonmembers of the International Society of Chemical Ecology. Manuscripts must be in English and may include original research in biological and/or chemical aspects of chemical ecology. They may include substantive observations of interactions in nature, the elucidation of the chemical compounds involved, the mechanisms of their production and reception, and the translation of such basic information into survey and control protocols. Sufficient biological and chemical detail should be given to substantiate conclusions and to permit results to be evaluated and reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信