{"title":"Adsorption of Congo red Dye from Aqueous Solution onto Wheat Husk in a Fluidized Bed Reactor","authors":"I. Sabah, Abeer I. Alwared","doi":"10.31699/ijcpe.2019.4.9","DOIUrl":"https://doi.org/10.31699/ijcpe.2019.4.9","url":null,"abstract":"The purpose of this paper is to examine absorbance for the removal of the Red Congo using wheat husk as a biological pesticide. Several experiments have been conducted with the aim of configuring breakthrough data in a fluidized bed reactor. The minimum fluidized velocities of the bed were found to be 0.031 mm/s for mish sizes of (250) µm diameter with study the mass transfer be calculated KL values. The results showed a well-fitting with the experimental data. Different operating conditions were selected: bed height (2, 5 and 10) cm, flow rate (90, 100and 120) ml/sec and particle diameter (250, 600, 1000) µm. The breakthrough curves were plotted for Congo Red, Values showed that the lower the bed, the lower the number of adsorbents and the potential of the weak bed to condense the density of the solution, which also increases the flow rate and will increase the mass transfer rate.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"177 1","pages":"55-60"},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83397807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioethanol (Biofuel) Production from Low Grade Dates","authors":"Raghad Ali Abbas, H. Flayeh","doi":"10.31699/ijcpe.2019.4.7","DOIUrl":"https://doi.org/10.31699/ijcpe.2019.4.7","url":null,"abstract":"Bioethanol production from sugar fermentation is one of the most sustainable alternatives to substitute fossil fuel. production of bioethanol from low grade dates which are rich of sugars. An available sugar from a second grade dates (reduction sugar) was 90g/l in this study. Sugar can be served as essential carbon sources for yeast growth in aerobic condition and can also be converted to bioethanol in anaerobic condition. The effect of various parameters on bioethanol production, fermentation time, pH-values, inoculum size and initial sugar concentration were varied in order to determine the optimal of bioethanol production. The highest bioethanol yield was 33g/l which was obtained with sugar concentration 90 g/l, inoculum size 1%, 52h time and pH-value 5.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"12 1","pages":"41-47"},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91386033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced conversion of Glycerol to Glycerol carbonate on modified Bio-Char from reed plant","authors":"S. mohamed, M. J. Ahmed","doi":"10.31699/ijcpe.2019.4.3","DOIUrl":"https://doi.org/10.31699/ijcpe.2019.4.3","url":null,"abstract":"The surplus glycerol produced from biodiesel production process as a by-product with high quantity can be considered as a good source to prepare glycerol carbonate (GC) whereas with each 1000 kg from biodiesel obtains 100 kg from glycerol. Glycerol converted to glycerol carbonate over bio-char as a catalyst prepared by slow pyrolysis process under various temperatures from 400 ᴼC to 800 ᴼC. The char prepared at 700 ᴼC considered as a best one between the others which was manufactured to activate the transesterification reaction. GC have large scale of uses such as liquid membrane in gas separation, surfactants ,detergents , blowing agent , in plastics industry, in Pharmaceutical industry and electrolytes in lithium batteries. Yield percent of GC is 9.3% without catalyze the reaction with char whereas in case of bio-char used the GC yield increases to 67.80%. When the catalyst modified with 3 molar concentration of sodium hydroxide, the yield of glycerol carbonate obtained 98.3% and complete conversion. All the reaction in this study performed under conditions 60ᴼC, 90 min, 3:1 DMC:G and 3%wt. catalyst loading.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"4 1","pages":"15-20"},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90866497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental Study of Iraqi Light Naphtha Isomerization over Ni-Pt/H-Mordenite","authors":"H. M. Hussain, A. K. Mohammed","doi":"10.31699/ijcpe.2019.4.10","DOIUrl":"https://doi.org/10.31699/ijcpe.2019.4.10","url":null,"abstract":"Hydroisomerization of Iraqi light naphtha was studied on prepared Ni-Pt/H-mordenite catalyst at a temperature range of 220-300°C, hydrogen to hydrocarbon molar ratio of 3.7, liquid hourly space velocity (LHSV) 1 hr-1 and at atmospheric pressure. \u0000The result shows that the hydrisomerization of light naphtha increases with the increase in reaction temperature at constant LHSV. However, above 270 0C the isomers formation decreases and the reaction is shifted towards the hydrocracking reaction, a higher octane number of naphtha was formed at 270 °C.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"37 1","pages":"61-66"},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76411570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biodiesel production from used vegetable oil (sunflower cooking oil) using eggshell as bio catalyst","authors":"M. Hussien, H. Hameed","doi":"10.31699/ijcpe.2019.4.4","DOIUrl":"https://doi.org/10.31699/ijcpe.2019.4.4","url":null,"abstract":"Bio-diesel is an attractive fuel fordiesel engines. The feedstock for bio-diesel production is usually vegetable oil, waste cooking oil, or animal fats. This work provides an overview concerning bio-diesel production. Also, this work focuses on the commercial production of biodiesel. The objective is to study the influence of these parameters on the yield of produced. The biodiesel production affecting by many parameters such s alcohol ratio (5%, 10%,15 %, 20%,25%,30%35% vol.), catalyst loading (5,10,15,20,25) g,temperature (45,50,55,60,65,70,75)°C,reaction time (0-6) h, mixing rate (400-1000) rpm. the maximum bio-diesel production yield (95%) was obtained using 20% methanol ratio and 15g biocatalyst at 60°C.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"4996 2 1","pages":"21-25"},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83340041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adsorption Behavior of Light Naphtha Components on Zeolite (5A) and Activated Carbon","authors":"A. Hammadi, I. Shakir","doi":"10.31699/ijcpe.2019.4.5","DOIUrl":"https://doi.org/10.31699/ijcpe.2019.4.5","url":null,"abstract":"Light naphtha one of the products from distillation column in oil refineries used as feedstock for gasoline production. The major constituents of light naphtha are (Normal Paraffin, Isoparaffin, Naphthene, and Aromatic). In this paper, we used zeolite (5A) with uniform pores size (5Ao) to separate normal paraffin from light naphtha, due to suitable pore size for this process and compare the behavior of adsorption with activated carbon which has a wide range of pores size (micropores and mesopores) and high surface area. The process is done in a continuous system - Fixed bed reactor- at the vapor phase with the constant conditions of flow rate 5 ml/min, temperature 180oC, pressure 1.6 bar and 100-gram weight of each adsorbents. We notice that the molecular sieve (5A) separated the normal paraffin (C4 – C8) from light naphtha feed until equilibrium (saturation). Activated carbon separated naphthene and aromatics, in addition, the other component of normal paraffin C6 (n-hexane), C7 (n-heptane) and C8 (n-octane). And there is increasing in weight percentage of C4 (n-butane), C5 (n-pentane) and the weight percentage of isoparaffin until equilibrium (Saturation). The study showed the difference in physical adsorption behavior and the effect of pore size on these processes.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"7 9 1","pages":"27-33"},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88617922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Comparative Study of Pressure Losses and Hole Cleaning Efficiency of Water and Polymer solutions in Horizontal Wells","authors":"Karrar Ahmed Mohammed, Ayad A. Alhaleem","doi":"10.31699/ijcpe.2019.4.6","DOIUrl":"https://doi.org/10.31699/ijcpe.2019.4.6","url":null,"abstract":"The main objective of this study is to experimentally investigate the effect of the CMC polymeric drag reducer on the pressure drop occurred along the annulus of the wellbore in drilling operation and investigate the optimum polymer concentration that give the minimum pressure drop. A flow loop was designed for this purpose consist from 14 m long with transparent test section and differential pressure transmitter that allows to sense and measure the pressure losses along the test section. The results from the experimental work show that increasing in polymer concentration help to reduce the pressure drop in annulus and the optimum polymer concentration with the maximum drag reducing is 0.8 kg/m3. Also increasing in flow rate and corresponding fluid velocity in the gap of the annulus helped to reduce the pressure losses due to fluid flow.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"52 1","pages":"35-40"},"PeriodicalIF":0.0,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84014316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Khalid M. Abed, Badoor M. Kurji, Sarmad A. Rashid, B. Abdulmajeed
{"title":"KINETICS AND THERMODYNAMICS OF PEPPERMINT OIL EXTRACTION FROM PEPPERMINT LEAVES","authors":"Khalid M. Abed, Badoor M. Kurji, Sarmad A. Rashid, B. Abdulmajeed","doi":"10.31699/ijcpe.2019.4.1","DOIUrl":"https://doi.org/10.31699/ijcpe.2019.4.1","url":null,"abstract":"This study aimed to extraction of essential oil from peppermint leaves by using hydro distillation methods. In the peppermint oil extraction with hydro distillation method is studied the effect of the extraction temperature to the yield of peppermint oil. Besides it also studied the kinetics during the extraction process. Then, 2nd -order mechanism was adopted in the model of hydro distillation for estimation many parameters such as the initial extraction rate, capacity of extraction and the constant rat of extraction with various temperature. The same model was also used to estimate the activation energy. The results showed a spontaneous process, since the Gibbs free energy had a value negative sign.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"13 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2019-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74642705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The static aging effect on the seedless synthesis of different ranges FAU-type zeolite Y at various factors","authors":"S. Al‐Jubouri","doi":"10.31699/ijcpe.2019.4.2","DOIUrl":"https://doi.org/10.31699/ijcpe.2019.4.2","url":null,"abstract":"This work investigates generating of pure phase Faujasite-type zeolite Y at the ranges chosen for this study via a static aging step in the absence of seeds synthesis. Nano-sized crystals may result when LUDOX AS-40 is used as a silica source for gel composition of range 6 and the crystallization step may be conducted for a period of 4 to 19 hr at 100 ⁰C. Moreover, large-crystals with high crystallinity pure phase Y zeolite can be obtained at hereinabove conditions but when hydrous sodium metasilicate is used as a silica source. The other selected ranges also offer pure phase Y zeolite at the same controlled conditions.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"54 1","pages":"7-13"},"PeriodicalIF":0.0,"publicationDate":"2019-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74428885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction of methanol loss by hydrocarbon gas phase in hydrate inhibition unit by back propagation neural networks","authors":"B. Vaferi","doi":"10.22059/JCHPE.2019.283971.1288","DOIUrl":"https://doi.org/10.22059/JCHPE.2019.283971.1288","url":null,"abstract":"Gas hydrate often occurs in natural gas pipelines and process equipment at high pressure and low temperature. Methanol as a hydrate inhibitor injects to the potential hydrate systems and then recovers from the gas phase and re-injects to the system. Since methanol loss imposes an extra cost on the gas processing plants, designing a process for its reduction is necessary. In this study, an accurate back propagation neural network (BPNN) is designed for the prediction of methanol loss by the gas phase as a function of temperature, pressure, and methanol composition in the aqueous phase. Different configurations of BPNN were trained, tested, and a configuration providing the smallest absolute average relative deviation (AARD%) was chosen as an optimum structure. Finally, comparisons made among the accuracy of the developed BPNN model, process simulators, and probabilistic neural network (PNN). Results confirm that the designed BPNN model is more accurate than the other considered predictive tools. The BPNN provided an AARD=5.75% for prediction of experimental data, while Aspen-HYSYS, Aspen-Plus, and PNN presented an AARD% of 9.71, 12.57, and 13.27, respectively.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"32 1","pages":"253-264"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74804186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}