用反向传播神经网络预测水合物抑制装置烃类气相甲醇损失

Q4 Chemical Engineering
B. Vaferi
{"title":"用反向传播神经网络预测水合物抑制装置烃类气相甲醇损失","authors":"B. Vaferi","doi":"10.22059/JCHPE.2019.283971.1288","DOIUrl":null,"url":null,"abstract":"Gas hydrate often occurs in natural gas pipelines and process equipment at high pressure and low temperature. Methanol as a hydrate inhibitor injects to the potential hydrate systems and then recovers from the gas phase and re-injects to the system. Since methanol loss imposes an extra cost on the gas processing plants, designing a process for its reduction is necessary. In this study, an accurate back propagation neural network (BPNN) is designed for the prediction of methanol loss by the gas phase as a function of temperature, pressure, and methanol composition in the aqueous phase. Different configurations of BPNN were trained, tested, and a configuration providing the smallest absolute average relative deviation (AARD%) was chosen as an optimum structure. Finally, comparisons made among the accuracy of the developed BPNN model, process simulators, and probabilistic neural network (PNN). Results confirm that the designed BPNN model is more accurate than the other considered predictive tools. The BPNN provided an AARD=5.75% for prediction of experimental data, while Aspen-HYSYS, Aspen-Plus, and PNN presented an AARD% of 9.71, 12.57, and 13.27, respectively.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"32 1","pages":"253-264"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Prediction of methanol loss by hydrocarbon gas phase in hydrate inhibition unit by back propagation neural networks\",\"authors\":\"B. Vaferi\",\"doi\":\"10.22059/JCHPE.2019.283971.1288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gas hydrate often occurs in natural gas pipelines and process equipment at high pressure and low temperature. Methanol as a hydrate inhibitor injects to the potential hydrate systems and then recovers from the gas phase and re-injects to the system. Since methanol loss imposes an extra cost on the gas processing plants, designing a process for its reduction is necessary. In this study, an accurate back propagation neural network (BPNN) is designed for the prediction of methanol loss by the gas phase as a function of temperature, pressure, and methanol composition in the aqueous phase. Different configurations of BPNN were trained, tested, and a configuration providing the smallest absolute average relative deviation (AARD%) was chosen as an optimum structure. Finally, comparisons made among the accuracy of the developed BPNN model, process simulators, and probabilistic neural network (PNN). Results confirm that the designed BPNN model is more accurate than the other considered predictive tools. The BPNN provided an AARD=5.75% for prediction of experimental data, while Aspen-HYSYS, Aspen-Plus, and PNN presented an AARD% of 9.71, 12.57, and 13.27, respectively.\",\"PeriodicalId\":15333,\"journal\":{\"name\":\"Journal of Chemical and Petroleum Engineering\",\"volume\":\"32 1\",\"pages\":\"253-264\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical and Petroleum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/JCHPE.2019.283971.1288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical and Petroleum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/JCHPE.2019.283971.1288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 4

摘要

天然气水合物经常发生在高压低温下的天然气管道和工艺设备中。甲醇作为水合物抑制剂注入到潜在的水合物体系中,然后从气相中回收并再注入到体系中。由于甲醇的损失给气体处理厂带来了额外的成本,因此设计一种减少甲醇的工艺是必要的。在本研究中,设计了一个精确的反向传播神经网络(BPNN),用于预测气相甲醇损失作为温度、压力和水相甲醇成分的函数。对不同配置的bp神经网络进行训练和测试,并选择具有最小绝对平均相对偏差(AARD%)的配置作为最优结构。最后,对所建立的bp神经网络模型、过程模拟器和概率神经网络(PNN)的精度进行了比较。结果证实,所设计的BPNN模型比其他考虑的预测工具更准确。BPNN预测实验数据的AARD=5.75%,而Aspen-HYSYS、Aspen-Plus和PNN的AARD%分别为9.71、12.57和13.27。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of methanol loss by hydrocarbon gas phase in hydrate inhibition unit by back propagation neural networks
Gas hydrate often occurs in natural gas pipelines and process equipment at high pressure and low temperature. Methanol as a hydrate inhibitor injects to the potential hydrate systems and then recovers from the gas phase and re-injects to the system. Since methanol loss imposes an extra cost on the gas processing plants, designing a process for its reduction is necessary. In this study, an accurate back propagation neural network (BPNN) is designed for the prediction of methanol loss by the gas phase as a function of temperature, pressure, and methanol composition in the aqueous phase. Different configurations of BPNN were trained, tested, and a configuration providing the smallest absolute average relative deviation (AARD%) was chosen as an optimum structure. Finally, comparisons made among the accuracy of the developed BPNN model, process simulators, and probabilistic neural network (PNN). Results confirm that the designed BPNN model is more accurate than the other considered predictive tools. The BPNN provided an AARD=5.75% for prediction of experimental data, while Aspen-HYSYS, Aspen-Plus, and PNN presented an AARD% of 9.71, 12.57, and 13.27, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信