Journal of breath research最新文献

筛选
英文 中文
Dental restorative materials and halitosis: a preliminaryin-vitrostudy. 牙科修复材料与口臭:体外初步研究
IF 3.8 4区 医学
Journal of breath research Pub Date : 2024-05-23 DOI: 10.1088/1752-7163/ad4b57
Tuğçe Odabaş, Osman Tolga Harorlı
{"title":"Dental restorative materials and halitosis: a preliminary<i>in-vitro</i>study.","authors":"Tuğçe Odabaş, Osman Tolga Harorlı","doi":"10.1088/1752-7163/ad4b57","DOIUrl":"10.1088/1752-7163/ad4b57","url":null,"abstract":"<p><p>Despite the widespread use of dental restorative materials, little information exists in the literature regarding their potential impact on bad breath. This in vitro study aims to fill this gap by investigating the influence of different restorative materials on the release of hydrogen sulfide (H<sub>2</sub>S). Thirteen diverse dental restorative materials, including composites, flowable composites, glass ionomer restorative materials, high-copper amalgam, and CAD-CAM blocks, were examined. Cellulose Sponge models were used as negative and positive control. All samples were prepared with a diameter of 5 mm and a height of 2 mm. Except for the negative control group, all samples were embedded into Allium cepa L., and the emitted H<sub>2</sub>S was measured using the Wintact W8802 hydrogen sulfide monitor. Surface roughness's effect on emission was explored by roughening the surfaces of CAD-CAM material samples, and gas emission was measured again. The data were statistically analyzed using the Kruskal-Wallis test and DSCF pairwise comparison tests. Fiber-reinforced flowable composite (EverX Flow), amalgam (Nova 70-caps), and certain composite materials (IPS Empress Direct, Tetric Evoceram, Admira Fusion X-tra) released higher H<sub>2</sub>S concentrations compared to the negative control. The H<sub>2</sub>S release period lasted longer in the same materials mentioned above, along with G-aenial Universal Injectable. Indirectly used materials, such as GC Cerasmart, Vita Enamic, and Vita YZ HT, demonstrated significantly lower emissions compared to other direct restoratives. Importantly, the surface roughness of indirect materials did not significantly affect peak H<sub>2</sub>S concentrations or release times. The study reveals variations in H<sub>2</sub>S release among restorative materials, suggesting potential advantages of indirect restorative materials in reducing H<sub>2</sub>S-induced halitosis. This comprehensive understanding of the relationship between restorative materials and halitosis can empower both dental professionals and patients to make well-informed treatment choices. Notably, there is evidence supporting the enhanced performance of indirect restorative materials for individuals affected by halitosis.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140921672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of breath sample collection method and length of storage of breath samples in Tedlar bags on the level of selected volatiles assessed using gas chromatography-ion mobility spectrometry (GC-IMS). 使用气相色谱-离子迁移谱法(GC-IMS)评估呼气样本收集方法和在 Tedlar 袋中储存呼气样本的时间对选定挥发性物质含量的影响。
IF 3.8 4区 医学
Journal of breath research Pub Date : 2024-05-17 DOI: 10.1088/1752-7163/ad4736
Barbora Czippelová, Slavomíra Nováková, Miroslava Šarlinová, Eva Baranovičová, Anna Urbanová, Zuzana Turianiková, Jana Čerňanová Krohová, Erika Halašová, Henrieta Škovierová
{"title":"Impact of breath sample collection method and length of storage of breath samples in Tedlar bags on the level of selected volatiles assessed using gas chromatography-ion mobility spectrometry (GC-IMS).","authors":"Barbora Czippelová, Slavomíra Nováková, Miroslava Šarlinová, Eva Baranovičová, Anna Urbanová, Zuzana Turianiková, Jana Čerňanová Krohová, Erika Halašová, Henrieta Škovierová","doi":"10.1088/1752-7163/ad4736","DOIUrl":"10.1088/1752-7163/ad4736","url":null,"abstract":"<p><p>The analysis of volatile organic compounds (VOCs) in exhaled air has attracted the interest of the scientific community because it provides the possibility of monitoring physiological and metabolic processes and non-invasive diagnostics of various diseases. However, this method remains underused in clinical practice as well as in research because of the lack of standardized procedures for the collection, storage and transport of breath samples, which would guarantee good reproducibility and comparability of results. The method of sampling, as well as the storage time of the breath samples in the polymer bags used for sample storage and transport, affect the composition and concentration of VOCs present in the breath samples. The aim of our study was to compare breath samples obtained using two methods with fully disposable equipment: a Haldane sampling tube intended for direct breath collection and breath samples exhaled into a transparent Tedlar bag. The second task was to monitor the stability of selected compounds of real breath samples stored in a Tedlar bag for 6 h. Gas chromatography coupled with ion mobility spectrometry (GC-IMS) implemented in the BreathSpec<sup>®</sup>device was used to analyse exhaled breath. Our results showed a significant difference in the signal intensity of some volatiles when taking a breath sample with a Haldane tube and a Tedlar bag. Due to its endogenous origin, acetone levels were significantly higher when the Haldane tube sampler was used while elevated levels of 2-propanol and unidentified VOC (designated as VOC 3) in the Tedlar bag samples likely originated from contamination of the Tedlar bags. The VOC stability study revealed compound-specific signal intensity changes of the selected VOCs with storage time in the Tedlar bags, with some volatiles showing increasing signal intensity during storage in Tedlar bags. This limits the use of Tedlar bags only for very limited time and carefully selected purpose. Our results highlight the importance of careful design and implementation of experiments and clinical protocols to obtain relevant and reliable results.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exhaled breath analysis in patients with potentially curative lung cancer undergoing surgery: a longitudinal study. 可能治愈的肺癌手术患者的呼气分析:一项纵向研究。
IF 3.8 4区 医学
Journal of breath research Pub Date : 2024-05-17 DOI: 10.1088/1752-7163/ad48a9
Jonas Herth, Felix Schmidt, Sarah Basler, Noriane A Sievi, Malcolm Kohler
{"title":"Exhaled breath analysis in patients with potentially curative lung cancer undergoing surgery: a longitudinal study.","authors":"Jonas Herth, Felix Schmidt, Sarah Basler, Noriane A Sievi, Malcolm Kohler","doi":"10.1088/1752-7163/ad48a9","DOIUrl":"10.1088/1752-7163/ad48a9","url":null,"abstract":"<p><p>Exhaled breath analysis has emerged as a non-invasive and promising method for early detection of lung cancer, offering a novel approach for diagnosis through the identification of specific biomarkers present in a patient's breath. For this longitudinal study, 29 treatment-naive patients with lung cancer were evaluated before and after surgery. Secondary electrospray ionization high-resolution mass spectrometry was used for exhaled breath analysis. Volatile organic compounds with absolute log<sup>2</sup>fold change ⩾1 and<i>q</i>-values ⩾ 0.71 were selected as potentially relevant. Exhaled breath analysis resulted in a total of 3482 features. 515 features showed a substantial difference before and after surgery. The small sample size generated a false positive rate of 0.71, therefore, around 154 of these 515 features were expected to be true changes. Biological identification of the features with the highest consistency (<i>m</i>/<i>z</i>-242.18428 and<i>m</i>/<i>z</i>-117.0539) revealed to potentially be 3-Oxotetradecanoic acid and Indole, respectively. Principal component analysis revealed a primary cluster of patients with a recurrent lung cancer, which remained undetected in the initial diagnostic and surgical procedures. The change of exhaled breath patterns after surgery in lung cancer emphasizes the potential for lung cancer screening and detection.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140891751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of volatile organic compounds sampling from dairy cow exhaled breath using polymer-based solid-phase extraction cartridges for gas chromatographic analysis. 使用聚合物固相萃取盒优化奶牛呼出气体中挥发性有机化合物的采样,以便进行气相色谱分析。
IF 3.8 4区 医学
Journal of breath research Pub Date : 2024-04-16 DOI: 10.1088/1752-7163/ad38d5
Julia Eichinger, Anna-Maria Reiche, Frigga Dohme-Meier, Pascal Fuchsmann
{"title":"Optimization of volatile organic compounds sampling from dairy cow exhaled breath using polymer-based solid-phase extraction cartridges for gas chromatographic analysis.","authors":"Julia Eichinger, Anna-Maria Reiche, Frigga Dohme-Meier, Pascal Fuchsmann","doi":"10.1088/1752-7163/ad38d5","DOIUrl":"10.1088/1752-7163/ad38d5","url":null,"abstract":"<p><p>We explored appropriate technical setups for the detection of volatile organic compounds (VOCs) from exhaled cow breath by comparing six different polymer-based solid-phase extraction (SPE) cartridges currently on the market for gas chromatography/mass spectrometry (GC-MS) screening. Exhaled breath was sampled at a single timepoint from five lactating dairy cows using six different SPE cartridges (Bond Elut ENV (ENV); Chromabond HRX (HRX); Chromabond HRP (HRP); Chromabond HLB (HLB); Chromabond HR-XCW (XCW) and Chromabond HR-XAW (XAW)). The trapped VOCs were analyzed by dynamic headspace vacuum in-tube extraction GC-MS (DHS-V-ITEX-GC-MS). Depending on the SPE cartridge, we detected 1174-1312 VOCs per cartridge. Most VOCs were alkenes, alkanes, esters, ketones, alcohols, aldehydes, amines, nitriles, ethers, amides, carboxylic acids, alkynes, azoles, terpenes, pyridines, or sulfur-containing compounds. The six SPE cartridges differed in their specificity for the chemical compounds, with the XAW cartridge showing the best specificity for ketones. The greatest differences between the tested SPE cartridges appeared in the detection of specific VOCs. In total, 176 different VOCs were detected with a match factor >80%. The greatest number of specific VOCs was captured by XAW (149), followed by ENV (118), HLB (117), HRP (115), HRX (114), and XCW (114). We conclude that the tested SPE cartridges are suitable for VOC sampling from exhaled cow breath, but the SPE cartridge choice enormously affects the detected chemical groups and the number of detected VOCs. Therefore, an appropriate SPE adsorbent cartridge should be selected according to our proposed inclusion criteria. For targeted metabolomics approaches, the SPE cartridge choice depends on the VOCs or chemical compound groups of interest based on our provided VOC list. For untargeted approaches without information on the animals' metabolic condition, we suggest using multi-sorbent SPE cartridges or multiple cartridges per animal.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140318370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection ofClostridioides difficileinfection by assessment of exhaled breath volatile organic compounds. 通过评估呼出气体中的挥发性有机化合物来检测艰难梭菌感染。
IF 3.8 4区 医学
Journal of breath research Pub Date : 2024-03-28 DOI: 10.1088/1752-7163/ad3572
Teny M John, Nabin K Shrestha, Leen Hasan, Kirk Pappan, Owen Birch, David Grove, Billy Boyle, Max Allsworth, Priyanka Shrestha, Gary W Procop, Raed A Dweik
{"title":"Detection of<i>Clostridioides difficile</i>infection by assessment of exhaled breath volatile organic compounds.","authors":"Teny M John, Nabin K Shrestha, Leen Hasan, Kirk Pappan, Owen Birch, David Grove, Billy Boyle, Max Allsworth, Priyanka Shrestha, Gary W Procop, Raed A Dweik","doi":"10.1088/1752-7163/ad3572","DOIUrl":"10.1088/1752-7163/ad3572","url":null,"abstract":"<p><p><i>Clostridioides difficile</i>infection (CDI) is the leading cause of hospital-acquired infective diarrhea. Current methods for diagnosing CDI have limitations; enzyme immunoassays for toxin have low sensitivity and<i>Clostridioides difficile</i>polymerase chain reaction cannot differentiate infection from colonization. An ideal diagnostic test that incorporates microbial factors, host factors, and host-microbe interaction might characterize true infection. Assessing volatile organic compounds (VOCs) in exhaled breath may be a useful test for identifying CDI. To identify a wide selection of VOCs in exhaled breath, we used thermal desorption-gas chromatography-mass spectrometry to study breath samples from 17 patients with CDI. Age- and sex-matched patients with diarrhea and negative<i>C.difficile</i>testing (no CDI) were used as controls. Of the 65 VOCs tested, 9 were used to build a quadratic discriminant model that showed a final cross-validated accuracy of 74%, a sensitivity of 71%, a specificity of 76%, and a receiver operating characteristic area under the curve of 0.72. If these findings are proven by larger studies, breath VOC analysis may be a helpful adjunctive diagnostic test for CDI.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Volatilomic profiles of gastric juice in gastric cancer patients. 胃癌患者胃液的挥发性特征
IF 3.8 4区 医学
Journal of breath research Pub Date : 2024-03-21 DOI: 10.1088/1752-7163/ad324f
Linda Mezmale, Daria Ślefarska-Wolak, Manohar Prasad Bhandari, Clemens Ager, Viktors Veliks, Veronika Patsko, Andrii Lukashenko, Emmanuel Dias-Neto, Diana Noronha Nunes, Thais Fernanda Bartelli, Adriane Graicer Pelosof, Claudia Zitron Sztokfisz, Raúl Murillo, Agnieszka Królicka, Chris A Mayhew, Marcis Leja, Hossam Haick, Pawel Mochalski
{"title":"Volatilomic profiles of gastric juice in gastric cancer patients.","authors":"Linda Mezmale, Daria Ślefarska-Wolak, Manohar Prasad Bhandari, Clemens Ager, Viktors Veliks, Veronika Patsko, Andrii Lukashenko, Emmanuel Dias-Neto, Diana Noronha Nunes, Thais Fernanda Bartelli, Adriane Graicer Pelosof, Claudia Zitron Sztokfisz, Raúl Murillo, Agnieszka Królicka, Chris A Mayhew, Marcis Leja, Hossam Haick, Pawel Mochalski","doi":"10.1088/1752-7163/ad324f","DOIUrl":"10.1088/1752-7163/ad324f","url":null,"abstract":"<p><p>Volatilomics is a powerful tool capable of providing novel biomarkers for the diagnosis of gastric cancer. The main objective of this study was to characterize the volatilomic signatures of gastric juice in order to identify potential alterations induced by gastric cancer. Gas chromatography with mass spectrometric detection, coupled with headspace solid phase microextraction as the pre-concentration technique, was used to identify volatile organic compounds (VOCs) released by gastric juice samples collected from 78 gastric cancer patients and two cohorts of controls (80 and 96 subjects) from four different locations (Latvia, Ukraine, Brazil, and Colombia). 1440 distinct compounds were identified in samples obtained from patients and 1422 in samples provided by controls. However, only 6% of the VOCs exhibited an incidence higher than 20%. Amongst the volatiles emitted, 18 showed differences in their headspace concentrations above gastric juice of cancer patients and controls. Ten of these (1-propanol, 2,3-butanedione, 2-pentanone, benzeneacetaldehyde, 3-methylbutanal, butylated hydroxytoluene, 2-pentyl-furan, 2-ethylhexanal, 2-methylpropanal and phenol) appeared at significantly higher levels in the headspace of the gastric juice samples obtained from patients; whereas, eight species showed lower abundance in patients than found in controls. Given that the difference in the volatilomic signatures can be explained by cancer-related changes in the activity of certain enzymes or pathways, the former set can be considered potential biomarkers for gastric cancer, which may assist in developing non-invasive breath tests for the diagnosis of this disease. Further studies are required to elucidate further the mechanisms that underlie the changes in the volatilomic profile as a result of gastric cancer.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140101659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning enabled detection of COVID-19 pneumonia using exhaled breath analysis: a proof-of-concept study. 利用呼气分析的机器学习功能检测 COVID-19 肺炎:概念验证研究。
IF 3.8 4区 医学
Journal of breath research Pub Date : 2024-03-13 DOI: 10.1088/1752-7163/ad2b6e
Ruth P Cusack, Robyn Larracy, Christian B Morrell, Maral Ranjbar, Jennifer Le Roux, Christiane E Whetstone, Maxime Boudreau, Patrick F Poitras, Thiviya Srinathan, Eric Cheng, Karen Howie, Catie Obminski, Tim O'Shea, Rebecca J Kruisselbrink, Terence Ho, Erik Scheme, Stephen Graham, Gisia Beydaghyan, Gail M Gavreau, MyLinh Duong
{"title":"Machine learning enabled detection of COVID-19 pneumonia using exhaled breath analysis: a proof-of-concept study.","authors":"Ruth P Cusack, Robyn Larracy, Christian B Morrell, Maral Ranjbar, Jennifer Le Roux, Christiane E Whetstone, Maxime Boudreau, Patrick F Poitras, Thiviya Srinathan, Eric Cheng, Karen Howie, Catie Obminski, Tim O'Shea, Rebecca J Kruisselbrink, Terence Ho, Erik Scheme, Stephen Graham, Gisia Beydaghyan, Gail M Gavreau, MyLinh Duong","doi":"10.1088/1752-7163/ad2b6e","DOIUrl":"10.1088/1752-7163/ad2b6e","url":null,"abstract":"<p><p>Detection of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) relies on real-time-reverse-transcriptase polymerase chain reaction (RT-PCR) on nasopharyngeal swabs. The false-negative rate of RT-PCR can be high when viral burden and infection is localized distally in the lower airways and lung parenchyma. An alternate safe, simple and accessible method for sampling the lower airways is needed to aid in the early and rapid diagnosis of COVID-19 pneumonia. In a prospective unblinded observational study, patients admitted with a positive RT-PCR and symptoms of SARS-CoV-2 infection were enrolled from three hospitals in Ontario, Canada. Healthy individuals or hospitalized patients with negative RT-PCR and without respiratory symptoms were enrolled into the control group. Breath samples were collected and analyzed by laser absorption spectroscopy (LAS) for volatile organic compounds (VOCs) and classified by machine learning (ML) approaches to identify unique LAS-spectra patterns (breathprints) for SARS-CoV-2. Of the 135 patients enrolled, 115 patients provided analyzable breath samples. Using LAS-breathprints to train ML classifier models resulted in an accuracy of 72.2%-81.7% in differentiating between SARS-CoV2 positive and negative groups. The performance was consistent across subgroups of different age, sex, body mass index, SARS-CoV-2 variants, time of disease onset and oxygen requirement. The overall performance was higher than compared to VOC-trained classifier model, which had an accuracy of 63%-74.7%. This study demonstrates that a ML-based breathprint model using LAS analysis of exhaled breath may be a valuable non-invasive method for studying the lower airways and detecting SARS-CoV-2 and other respiratory pathogens. The technology and the ML approach can be easily deployed in any setting with minimal training. This will greatly improve access and scalability to meet surge capacity; allow early and rapid detection to inform therapy; and offers great versatility in developing new classifier models quickly for future outbreaks.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139931321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic insights at the finish line: deciphering physiological changes in ultramarathon runners through breath VOC analysis. 终点线上的代谢洞察:通过呼吸挥发性有机化合物分析解读超级马拉松运动员的生理变化。
IF 3.8 4区 医学
Journal of breath research Pub Date : 2024-02-12 DOI: 10.1088/1752-7163/ad23f5
Hsuan Chou, Kayleigh Arthur, Elen Shaw, Chad Schaber, Billy Boyle, Max Allsworth, Eli F Kelley, Glenn M Stewart, Courtney M Wheatley, Jesse Schwartz, Caitlin C Fermoyle, Briana L Ziegler, Kay A Johnson, Paul Robach, Patrick Basset, Bruce D Johnson
{"title":"Metabolic insights at the finish line: deciphering physiological changes in ultramarathon runners through breath VOC analysis.","authors":"Hsuan Chou, Kayleigh Arthur, Elen Shaw, Chad Schaber, Billy Boyle, Max Allsworth, Eli F Kelley, Glenn M Stewart, Courtney M Wheatley, Jesse Schwartz, Caitlin C Fermoyle, Briana L Ziegler, Kay A Johnson, Paul Robach, Patrick Basset, Bruce D Johnson","doi":"10.1088/1752-7163/ad23f5","DOIUrl":"10.1088/1752-7163/ad23f5","url":null,"abstract":"<p><p>Exhaustive exercise can induce unique physiological responses in the lungs and other parts of the human body. The volatile organic compounds (VOCs) in exhaled breath are ideal for studying the effects of exhaustive exercise on the lungs due to the proximity of the breath matrix to the respiratory tract. As breath VOCs can originate from the bloodstream, changes in abundance should also indicate broader physiological effects of exhaustive exercise on the body. Currently, there is limited published data on the effects of exhaustive exercise on breath VOCs. Breath has great potential for biomarker analysis as it can be collected non-invasively, and capture real-time metabolic changes to better understand the effects of exhaustive exercise. In this study, we collected breath samples from a small group of elite runners participating in the 2019 Ultra-Trail du Mont Blanc ultra-marathon. The final analysis included matched paired samples collected before and after the race from 24 subjects. All 48 samples were analyzed using the Breath Biopsy Platform with GC-Orbitrap™ via thermal desorption gas chromatography-mass spectrometry. The Wilcoxon signed-rank test was used to determine whether VOC abundances differed between pre- and post-race breath samples (adjusted<i>P</i>-value < .05). We identified a total of 793 VOCs in the breath samples of elite runners. Of these, 63 showed significant differences between pre- and post-race samples after correction for multiple testing (12 decreased, 51 increased). The specific VOCs identified suggest the involvement of fatty acid oxidation, inflammation, and possible altered gut microbiome activity in response to exhaustive exercise. This study demonstrates significant changes in VOC abundance resulting from exhaustive exercise. Further investigation of VOC changes along with other physiological measurements can help improve our understanding of the effect of exhaustive exercise on the body and subsequent differences in VOCs in exhaled breath.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139642169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The optimization and comparison of two high-throughput faecal headspace sampling platforms: the microchamber/thermal extractor and hi-capacity sorptive extraction probes (HiSorb). 两种高通量粪便顶空采样平台的优化与比较:微室/热萃取器和高容量吸附萃取探针(HiSorb)。
IF 3.8 4区 医学
Journal of breath research Pub Date : 2024-02-05 DOI: 10.1088/1752-7163/ad2002
Robert van Vorstenbosch, Alex Mommers, Daniëlle Pachen, Frederik-Jan van Schooten, Agnieszka Smolinska
{"title":"The optimization and comparison of two high-throughput faecal headspace sampling platforms: the microchamber/thermal extractor and hi-capacity sorptive extraction probes (HiSorb).","authors":"Robert van Vorstenbosch, Alex Mommers, Daniëlle Pachen, Frederik-Jan van Schooten, Agnieszka Smolinska","doi":"10.1088/1752-7163/ad2002","DOIUrl":"10.1088/1752-7163/ad2002","url":null,"abstract":"<p><p>Disease detection and monitoring using volatile organic compounds (VOCs) is becoming increasingly popular. For a variety of (gastrointestinal) diseases the microbiome should be considered. As its output is to large extent volatile, faecal volatilomics carries great potential. One technical limitation is that current faecal headspace analysis requires specialized instrumentation which is costly and typically does not work in harmony with thermal desorption units often utilized in e.g. exhaled breath studies. This lack of harmonization hinders uptake of such analyses by the Volatilomics community. Therefore, this study optimized and compared two recently harmonized faecal headspace sampling platforms:<i>High-capacity Sorptive extraction (HiSorb) probes</i>and the<i>Microchamber thermal extractor (Microchamber)</i>. Statistical design of experiment was applied to find optimal sampling conditions by maximizing reproducibility, the number of VOCs detected, and between subject variation. To foster general applicability those factors were defined using semi-targeted as well as untargeted metabolic profiles. HiSorb probes were found to result in a faster sampling procedure, higher number of detected VOCs, and higher stability. The headspace collection using the Microchamber resulted in a lower number of detected VOCs, longer sampling times and decreased stability despite a smaller number of interfering VOCs and no background signals. Based on the observed profiles, recommendations are provided on pre-processing and study design when using either one of both platforms. Both can be used to perform faecal headspace collection, but altogether HiSorb is recommended.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139491511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics of extra-oral halitosis induced by functional constipation: a prospective cohort study. 功能性便秘诱发口外口臭的特征:一项前瞻性队列研究。
IF 3.8 4区 医学
Journal of breath research Pub Date : 2024-02-01 DOI: 10.1088/1752-7163/ad2213
Xiao Xian Qian
{"title":"Characteristics of extra-oral halitosis induced by functional constipation: a prospective cohort study.","authors":"Xiao Xian Qian","doi":"10.1088/1752-7163/ad2213","DOIUrl":"10.1088/1752-7163/ad2213","url":null,"abstract":"<p><p>Characteristics of extra-oral halitosis induced by functional constipation (FC) have never been revealed. To address this, this prospective cohort was conducted with 100 FC patients, who were divided into a halitosis group and a negative group. Organoleptic score (OLS) ⩾ 2 in nose breath was diagnosed as extra-oral halitosis. Concentration of overall volatile sulfur compounds (VSCs) measured by Halimeter, concentration of hydrogen sulfide (HS), methanethiol (MT), dimethyl sulfide (DMS) and their total amount measured by OralChroma in nose breath was recorded as<i>C</i>-VSC,<i>C</i>-HS,<i>C</i>-MT,<i>C</i>-DMS and<i>C</i>-sum respectively. We found that 82% (82/100) of the FC patients had extra-oral halitosis. However, only 12.5% (3/82) and 1.22% (1/82) of halitosis group were correctly diagnosed with the current diagnostic threshold of<i>C</i>-VSC ⩾ 110 parts per billion (ppb) and ⩾150 ppb.<i>C</i>-VSC,<i>C</i>-DMS and<i>C</i>-sum were significantly higher in the halitosis group compared to the negative group (all<i>P</i>< 0.001), with ratios of about 2.2 times, 3.1 times and 2.1 times respectively.<i>C</i>-HS and<i>C</i>-MT were low and not significantly different between the groups. Positive correlations were observed among OLS,<i>C</i>-VSC,<i>C</i>-DMS and<i>C</i>-sum. The area under curve of receiver operating characteristics of<i>C</i>-VSC<i>, C</i>-DMS and<i>C</i>-sum for predicting FC-induced halitosis was 0.909, 0.9073 and 0.962 respectively, with the threshold values of ⩾36 ppb, ⩾52 ppb and ⩾75 ppb respectively. Therefore, we conclude that: (1) DMS is the primary contributor to FC-induced extra-oral halitosis. (2) OLS, Halimeter and OralChroma are consistent in detecting FC-induced extra-oral halitosis. (3) The diagnostic threshold for Halimeter should be adjusted to<i>C</i>-VSC ⩾ 36 ppb and the diagnostic threshold for OralChroma should be set as<i>C</i>-DMS ⩾ 52 ppb for diagnosing FC-induced extra-oral halitosis.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139546539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信