Journal of Biomedical Optics最新文献

筛选
英文 中文
Deep structural brain imaging via computational three-photon microscopy.
IF 3 3区 医学
Journal of Biomedical Optics Pub Date : 2025-04-01 Epub Date: 2025-03-29 DOI: 10.1117/1.JBO.30.4.046002
Lingmei Chen, Mubin He, Lu Yang, Lingxi Zhou, Shuhao Qian, Chuncheng Wang, Rushan Jiang, Zhihua Ding, Jun Qian, Zhiyi Liu
{"title":"Deep structural brain imaging via computational three-photon microscopy.","authors":"Lingmei Chen, Mubin He, Lu Yang, Lingxi Zhou, Shuhao Qian, Chuncheng Wang, Rushan Jiang, Zhihua Ding, Jun Qian, Zhiyi Liu","doi":"10.1117/1.JBO.30.4.046002","DOIUrl":"10.1117/1.JBO.30.4.046002","url":null,"abstract":"<p><strong>Significance: </strong>High-resolution optical imaging at significant depths is challenging due to scattering, which impairs image quality in living matter with complex structures. We address the need for improved imaging techniques in deep tissues.</p><p><strong>Aim: </strong>We aim to develop a computational deep three-photon microscopy (3PM) method that enhances image quality without compromising acquisition speed, increasing excitation power, or adding extra optical components.</p><p><strong>Approach: </strong>We introduce a method called low-rank diffusion model (LRDM)-3PM, which utilizes customized aggregation-induced emission nanoprobes and self-supervised deep learning. This approach leverages superficial information from three-dimensional (3D) images to compensate for scattering and structured noise from the imaging system.</p><p><strong>Results: </strong>LRDM-3PM achieves a remarkable signal-to-background ratio above 100 even at depths of 1.5 mm, enabling the imaging of the hippocampus in live mouse brains. It integrates with a multiparametric analysis platform for resolving morpho-structural features of brain vasculature in a completely 3D manner, accurately recognizing distinct brain regions.</p><p><strong>Conclusions: </strong>LRDM-3PM demonstrates the potential for minimally invasive <i>in vivo</i> imaging and analysis, offering a significant advancement in the field of deep tissue imaging by maintaining high-resolution quality at unprecedented depths.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 4","pages":"046002"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954598/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143753043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-channel pulse-dye densitometry can enable correction of fluorescent targeted and control agent plasma input function differences for quantitative paired-agent molecular imaging: a simulation study.
IF 3 3区 医学
Journal of Biomedical Optics Pub Date : 2025-04-01 Epub Date: 2025-03-29 DOI: 10.1117/1.JBO.30.4.046001
Cody C Rounds, Yichen Feng, Sanjana Pannem, Jovan Brankov, Kimberly S Samkoe, Kenneth M Tichauer
{"title":"Dual-channel pulse-dye densitometry can enable correction of fluorescent targeted and control agent plasma input function differences for quantitative paired-agent molecular imaging: a simulation study.","authors":"Cody C Rounds, Yichen Feng, Sanjana Pannem, Jovan Brankov, Kimberly S Samkoe, Kenneth M Tichauer","doi":"10.1117/1.JBO.30.4.046001","DOIUrl":"10.1117/1.JBO.30.4.046001","url":null,"abstract":"<p><strong>Significance: </strong>Paired-agent fluorescent molecular imaging approaches involve co-administration of a control (untargeted) imaging agent with a molecularly targeted agent to account for non-specific effects and quantify binding potential (BP)-a parameter proportional to the concentration of the targeted biomolecule. Accurate BP estimation often requires correction for differences in targeted and control agent plasma input functions (PIFs).</p><p><strong>Aim: </strong>We provide a simulation-based evaluation of whether dual-channel pulse dye densitometry (PDD) can be used to measure the PIFs of co-administered targeted and control imaging agents, to enable accurate BP estimation.</p><p><strong>Approach: </strong>Monte-Carlo simulations of light propagation were carried out using the anatomy and optical properties of a finger, as well as experimentally measured PIFs of co-administered anti-epidermal growth factor receptor fluorescent affibody, ABY-029, and IRDye 680LT, a control imaging agent from past mouse experiments. The accuracy of PIF shape estimation from PDD and PIF difference correction was evaluated by assessing BP estimation accuracy in a simulated \"tumor\" tissue.</p><p><strong>Results: </strong>\"Tumor\" BP measurements using deconvolution correction with noise-free PIFs versus PDD-measured PIFs were compared. The relative error in PDD PIF deconvolution BP estimation was <math><mrow><mn>2</mn> <mo>±</mo> <mn>1</mn> <mo>%</mo></mrow> </math> . No statistical difference was found between the estimated BP via deconvolution correction with true PIFs and the estimated BP via the reconstructed PIFs using the proposed PAF-PDD methodology.</p><p><strong>Conclusions: </strong>These results highlight the potential for developing a PDD instrument that can directly measure targeted and control agent PIFs and be used to correct for any PIF differences between agents for more quantitative estimates of BP in paired-agent imaging studies.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 4","pages":"046001"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954597/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143753053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical characteristics of human lung cancer for photodynamic therapy with measured absorption and reduced scattering coefficients.
IF 3 3区 医学
Journal of Biomedical Optics Pub Date : 2025-04-01 DOI: 10.1117/1.JBO.30.4.048001
Yu Shimojo, Yuri Morizane, Takumi Sonokawa, Jitsuo Usuda, Takahiro Nishimura
{"title":"Optical characteristics of human lung cancer for photodynamic therapy with measured absorption and reduced scattering coefficients.","authors":"Yu Shimojo, Yuri Morizane, Takumi Sonokawa, Jitsuo Usuda, Takahiro Nishimura","doi":"10.1117/1.JBO.30.4.048001","DOIUrl":"10.1117/1.JBO.30.4.048001","url":null,"abstract":"<p><strong>Significance: </strong>The optical characteristics of a human lung, such as the light distribution in the tissue, are crucial for evaluating the light delivery of photodynamic therapy (PDT) for peripheral lung cancer.</p><p><strong>Aim: </strong>The light distribution in the human lung is analyzed with absorption ( <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> ) and reduced scattering ( <math> <mrow> <msubsup><mrow><mi>μ</mi></mrow> <mrow><mi>s</mi></mrow> <mrow><mo>'</mo></mrow> </msubsup> </mrow> </math> ) coefficients measured <i>ex vivo</i> for normal, carbon-deposited, and tumor tissues.</p><p><strong>Approach: </strong>The <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> and <math> <mrow> <msubsup><mrow><mi>μ</mi></mrow> <mrow><mi>s</mi></mrow> <mrow><mo>'</mo></mrow> </msubsup> </mrow> </math> spectra were measured using a double-integrating-sphere optical system and inverse Monte Carlo technique. The measured values were used to perform a light distribution analysis using a Monte Carlo light transport simulation.</p><p><strong>Results: </strong>The <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> values varied between tissue types owing to the influence of carbon deposition, blood volume fraction, and oxygen saturation, whereas the <math> <mrow> <msubsup><mrow><mi>μ</mi></mrow> <mrow><mi>s</mi></mrow> <mrow><mo>'</mo></mrow> </msubsup> </mrow> </math> values showed almost no differences between tissue types. The simulation results showed that carbon deposition in the surrounding tissue and oxygen saturation variability had almost no effect on PDT light delivery to a tumor with a 10-mm-diameter sphere.</p><p><strong>Conclusions: </strong>Our analysis revealed the influence of the optical characteristics of the lung tissue on PDT light delivery. Integration of these results with the photosensitizer dose and the degree of necrosis changes will allow us to provide more clinically relevant insight in determining PDT dosimetry.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 4","pages":"048001"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960791/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143764080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perspective on the use of optics in bladder cancer detection and diagnosis.
IF 3 3区 医学
Journal of Biomedical Optics Pub Date : 2025-04-01 Epub Date: 2025-04-04 DOI: 10.1117/1.JBO.30.4.040601
Marinka J Remmelink, Dylan J Peterson, Jakko A Nieuwenhuijzen, Ton G van Leeuwen, Joseph C Liao, Daniel M de Bruin
{"title":"Perspective on the use of optics in bladder cancer detection and diagnosis.","authors":"Marinka J Remmelink, Dylan J Peterson, Jakko A Nieuwenhuijzen, Ton G van Leeuwen, Joseph C Liao, Daniel M de Bruin","doi":"10.1117/1.JBO.30.4.040601","DOIUrl":"10.1117/1.JBO.30.4.040601","url":null,"abstract":"<p><strong>Significance: </strong>Bladder cancer (BC) diagnosis, management, and outcomes depend on the accurate detection of tumors via optical technologies. Accordingly, understanding the benefits and limitations of these technologies permits improvements in patient care and identifies areas for future research.</p><p><strong>Aim: </strong>We outline the current process of BC detection and diagnosis, explore the current role of optical technologies, and discuss the opportunities and challenges they present in this field.</p><p><strong>Approach: </strong>The current diagnostic pathway of BC, the use of optical technologies, and their shortcomings in this process are reviewed. From there, opportunities and challenges of optics in BC detection and diagnosis are discussed.</p><p><strong>Results: </strong>BC management is expensive due to the limitations of white light cystoscopy, the requirement for histopathological confirmation, and the need for long-term surveillance. Alternative non-optical methods lack accuracy, and available optical techniques focus only on cancer detection. Alternatives to histopathology need to provide accurate real-time results to be effective. Optical advancements offer potential benefits; however, challenges include cost-effectiveness, device complexity, required training, and tumor heterogeneity.</p><p><strong>Conclusions: </strong>Optical techniques could accelerate BC diagnosis, reduce costs, and enable alternative treatments. However, overcoming technical and practical challenges is essential for their successful integration.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 4","pages":"040601"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LED-based multicolor extended resolution transmission fluorescence microscopy.
IF 3 3区 医学
Journal of Biomedical Optics Pub Date : 2025-04-01 Epub Date: 2025-04-08 DOI: 10.1117/1.JBO.30.4.046501
Huaiyuan Zhang, Yiting Hu, Xingwei Pu, Shizheng Zhang, Yi He, Kun Chen, Ziji Liu
{"title":"LED-based multicolor extended resolution transmission fluorescence microscopy.","authors":"Huaiyuan Zhang, Yiting Hu, Xingwei Pu, Shizheng Zhang, Yi He, Kun Chen, Ziji Liu","doi":"10.1117/1.JBO.30.4.046501","DOIUrl":"https://doi.org/10.1117/1.JBO.30.4.046501","url":null,"abstract":"<p><strong>Significance: </strong>The multiplexing capabilities of fluorescence imaging are enhanced by its exceptional molecular specificity with diverse fluorescent probes, making it a powerful tool for studying complex biological structures, organization, and functions. Recent advances in super-resolution fluorescence microscopy have further revolutionized our ability to explore biology and related fields. However, current multicolor super-resolution fluorescence imaging systems often come with high costs and bulky designs.</p><p><strong>Aim: </strong>We present a multicolor extended resolution fluorescence imaging system that uses light-emitting diode to simplify the optical path, make the design more compact, and reduce system costs.</p><p><strong>Approach: </strong>This multicolor extended resolution fluorescence imaging system is based on structured illumination, utilizing a simple diffraction unit positioned between the light source and the sample in a wide-field microscope. Notably, this design could be easily integrated into standard widefield microscopes as a convenient add-on unit, enabling extended resolution imaging.</p><p><strong>Results: </strong>Our system demonstrates concurrent extended resolved imaging of three-color microsphere beads and successfully showcases multicolor extended resolution fluorescence imaging of biological tissue samples, revealing intricate structural details.</p><p><strong>Conclusions: </strong>This system provides a structurally simple, cost-effective alternative to traditional microscopes, offering flexible multicolor extended resolution fluorescence imaging and potential applications in multimodal imaging.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 4","pages":"046501"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11977515/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143811545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidating the effect of tumor and background region-of-interest selection on the performance metrics used to assess fluorescence imaging. 阐明肿瘤和背景感兴趣区选择对用于评估荧光成像的性能指标的影响。
IF 3 3区 医学
Journal of Biomedical Optics Pub Date : 2025-04-01 Epub Date: 2025-04-02 DOI: 10.1117/1.JBO.30.4.046004
Augustino V Scorzo, Caleb Y Kwon, Rendall R Strawbridge, P Jack Hoopes, David W Roberts, Scott C Davis
{"title":"Elucidating the effect of tumor and background region-of-interest selection on the performance metrics used to assess fluorescence imaging.","authors":"Augustino V Scorzo, Caleb Y Kwon, Rendall R Strawbridge, P Jack Hoopes, David W Roberts, Scott C Davis","doi":"10.1117/1.JBO.30.4.046004","DOIUrl":"10.1117/1.JBO.30.4.046004","url":null,"abstract":"<p><strong>Significance: </strong>The development of fluorescent contrast agents for fluorescence-guided surgery is rapidly growing with many agents being designed for tumor visualization. Although efforts have been made to standardize the sensitivity of imaging system detection methods for these contrast agents, guidelines to evaluate tumor contrast agent performance, especially the selection of tumor and background regions of interest (ROIs), differ widely across studies. We examine how systematically changing tumor and background ROIs affects common metrics of contrast agent performance.</p><p><strong>Aim: </strong>We aim to elucidate the influence of changing tumor and background brain regions of interest on fluorescent contrast agent performance.</p><p><strong>Approach: </strong>Mice with orthotopic brain tumors were administered a non-targeted fluorescent contrast agent 40 min prior to sacrifice and then imaging of the specimen using whole-body fluorescence cryotomography. The reconstructed 3D fluorescence volumes were then used to compute contrast and diagnostic performance metrics [tumor-to-background brain ratio (TBR), contrast-to-noise (CNR), and area under the receiver operating characteristic curve (AUC)] while systematically varying tumor and normal brain ROIs.</p><p><strong>Results: </strong>ROI selection had a significant impact on the reported values of metrics used to evaluate fluorescence imaging strategies. The use of contralateral background ROIs, commonly used in the field, produced elevated and favorable performance metric values. These metrics decreased as background ROIs approached regions adjacent to the tumor boundary. TBR changed by a factor of 5, CNR by a factor of 7, and AUC by over 10%, largely depending on the proximity of the background region to the tumor.</p><p><strong>Conclusions: </strong>Background ROI selection has a significant impact on the performance metrics commonly used in the field. Future studies should carefully select ROIs relevant to the application and include clear descriptions of these regions.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 4","pages":"046004"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963147/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143772567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing optical coherence tomography to detect occult spermatozoa in rat testis after induced non-obstructive azoospermia.
IF 3 3区 医学
Journal of Biomedical Optics Pub Date : 2025-04-01 Epub Date: 2025-04-08 DOI: 10.1117/1.JBO.30.4.046005
Luyang Yu, Yanhe Lue, Hang Yang, Junze Liu, Carlos Vega, Kevin Ho, Jacob Rajfer, Christina Wang, Ronald Swerdloff, B Hyle Park
{"title":"Optimizing optical coherence tomography to detect occult spermatozoa in rat testis after induced non-obstructive azoospermia.","authors":"Luyang Yu, Yanhe Lue, Hang Yang, Junze Liu, Carlos Vega, Kevin Ho, Jacob Rajfer, Christina Wang, Ronald Swerdloff, B Hyle Park","doi":"10.1117/1.JBO.30.4.046005","DOIUrl":"https://doi.org/10.1117/1.JBO.30.4.046005","url":null,"abstract":"<p><strong>Significance: </strong>The ability to detect and localize sperm in the testes is crucial for the treatment of non-obstructive azoospermia (NOA), a condition where sperm retrieval is challenging due to the lack of visible sperm. Enhancing the accuracy and efficiency of sperm detection can significantly improve the outcomes of microdissection testicular sperm extraction (micro-TESE) procedures in NOA patients.</p><p><strong>Aim: </strong>We aim to use optical coherence tomography (OCT) to detect the presence or absence of sperm in the imaged areas of the testes and to localize sperm-containing seminiferous tubules in a rat model of NOA.</p><p><strong>Approach: </strong>Volumetric OCT scanning was performed on 180 distinct regions from the testes of two control and 15 busulfan-treated rats to mimic NOA. Following scanning, excised tubules were observed under a dissecting microscope with transillumination to confirm the presence of sperm. The OCT data were processed by first delineating the tubule lumen and then evaluating the calibrated intensity and attenuation coefficient within the lumen. These quantifications, along with outer tubule diameter, were evaluated to identify sperm by comparison with the results of the microscope examination.</p><p><strong>Results: </strong>Our OCT results revealed a significant correlation between the presence of sperm and high attenuation coefficients in a rat model of NOA. The accuracy of sperm detection by OCT is 97.8% when compared with microscopic identification. In addition, OCT data were utilized for color-coded processing to automatically distinguish regions with a greater likelihood of the presence of sperm, which may assist surgeons in locating occult sperm in NOA patients.</p><p><strong>Conclusions: </strong>By providing high-resolution, non-invasive, automatic capture, and color-coded images, OCT has the potential to significantly enhance the efficiency of identification of tubules with spermatozoa during micro-TESE.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 4","pages":"046005"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143811549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical coherence tomography for label-free detection and characterization of methicillin-resistant S. aureus biofilms.
IF 3 3区 医学
Journal of Biomedical Optics Pub Date : 2025-04-01 DOI: 10.1117/1.JBO.30.4.046003
Natalia Demidova, Jason R Gunn, Ida Leah Gitajn, Ilya Alex Vitkin, Jonathan Thomas Elliott, Valentin V Demidov
{"title":"Optical coherence tomography for label-free detection and characterization of methicillin-resistant <i>S. aureus</i> biofilms.","authors":"Natalia Demidova, Jason R Gunn, Ida Leah Gitajn, Ilya Alex Vitkin, Jonathan Thomas Elliott, Valentin V Demidov","doi":"10.1117/1.JBO.30.4.046003","DOIUrl":"10.1117/1.JBO.30.4.046003","url":null,"abstract":"<p><strong>Significance: </strong>Orthopedic implant-associated infections cause serious complications primarily attributed to bacterial biofilm formation and are often characterized by increased antibiotic resistance and diminished treatment response. Yet, no methods currently exist to identify biofilms intraoperatively-surgeons rely solely on their eyes and hands and cannot detect or differentiate infected tissue to determine the location and extent of contamination.</p><p><strong>Aim: </strong>As the first step in addressing this unmet clinical need, here, we develop an optical coherence tomography (OCT)-based imaging method capable of detection <i>in situ</i> and quantification of one of the most dangerous orthopedic biofilms formed by methicillin-resistant <i>Staphylococcus aureus</i> (MRSA).</p><p><strong>Approach: </strong>Growing biofilms on orthopedic hardware, we identify MRSA distinct optical signature through histogram-based multi-parametric texture analysis of OCT images and support the findings with bioluminescence imaging and scanning electron microscopy. Under identical experimental conditions, we identify an optical signature of <i>Escherichia coli</i> (<i>E. coli</i>) biofilms and use it to distinguish and quantify both species within MRSA-<i>E. coli</i> biofilms.</p><p><strong>Results: </strong>The developed OCT-based methodology was successfully tested for (1) MRSA colonies delineation, (2) detection of metal hardware (an important feature for clinical translation where the metal surface of most orthopedic hardware is not flat), (3) automated quantification of biofilm thickness and roughness, and (4) identification of pores and, therefore, ability to evaluate the role of porosity-one of the critical biological metrics in relation to biofilm maturity and response to treatment. For the first time, we demonstrated complex pore structures of thick ( <math><mrow><mo>></mo> <mn>100</mn> <mrow><mtext>  </mtext></mrow> <mrow><mtext>microns</mtext></mrow> </mrow> </math> ) MRSA biofilms <i>in situ</i> with an unprecedented level of detail.</p><p><strong>Conclusions: </strong>The proposed rapid noninvasive detection/quantification of MRSA biofilms on metal surfaces and delineation of their complex network of pores opens new venues for label-free MRSA detection in preclinical models of trauma surgery, expansion to other bacterial strains, and further clinical translation.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 4","pages":"046003"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960790/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143764083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical coherence tomography needle probe for real-time visualization of temperature-induced phase changes within subcutaneous fatty tissue.
IF 3 3区 医学
Journal of Biomedical Optics Pub Date : 2025-03-01 Epub Date: 2025-03-11 DOI: 10.1117/1.JBO.30.3.035002
Hinnerk Schulz-Hildebrandt, Michael Wang-Evers, Naja Meyer-Schell, Daniel Karasik, Malte J Casper, Tim Eixmann, Felix Hilge, Reginald Birngruber, Dieter Manstein, Gereon Hüttmann
{"title":"Optical coherence tomography needle probe for real-time visualization of temperature-induced phase changes within subcutaneous fatty tissue.","authors":"Hinnerk Schulz-Hildebrandt, Michael Wang-Evers, Naja Meyer-Schell, Daniel Karasik, Malte J Casper, Tim Eixmann, Felix Hilge, Reginald Birngruber, Dieter Manstein, Gereon Hüttmann","doi":"10.1117/1.JBO.30.3.035002","DOIUrl":"10.1117/1.JBO.30.3.035002","url":null,"abstract":"<p><p><b>Significance</b>: Selective cryolipolysis is a widely used aesthetic procedure that cools subcutaneous adipose tissue to temperatures as low as <math><mrow><mo>-</mo> <mn>11</mn> <mo>°</mo> <mi>C</mi></mrow> </math> to induce fat cell destruction. However, real-time monitoring techniques are lacking, limiting the ability to optimize safety and efficacy. Traditional imaging methods either fail to provide adequate penetration depth or lack the resolution necessary for visualizing subcutaneous fatty tissue dynamics. <b>Aim</b>: This paper aims to demonstrate that an optical coherence tomography (OCT) needle probe can be used for real-time observation of temperature-induced changes in subcutaneous fatty tissue, potentially enhancing the assessment and optimization of cryolipolysis procedures. <b>Approach</b>: We developed a side-viewing OCT-based needle probe designed for subcutaneous imaging. The probe consists of a fiber-optic system encased in a transparent, biocompatible polymer catheter with an outer diameter of <math><mrow><mn>900</mn> <mtext>  </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> . A 49-degree angled fiber enables imaging, while a piezoelectric scanning system moves the fiber transversely within the catheter. The probe achieves a lateral resolution of <math><mrow><mo><</mo> <mn>15</mn> <mtext>  </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> , a working distance of <math><mrow><mn>600</mn> <mtext>  </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> , and a lateral field of view dictated by the scanning system length. OCT imaging was performed on porcine skin with a subcutaneous fat layer >3 cm thick during controlled heating and cooling. <b>Results</b>: OCT imaging revealed increased optical scattering in subcutaneous fatty tissue during cooling, corresponding to the phase transition from liquid to solid. This effect was reversible upon warming, indicating that OCT can dynamically monitor adipocyte crystallization in real time. The observed transition temperatures varied, likely due to differences in lipid composition. <b>Conclusions</b>: OCT-based needle imaging enables direct, high-resolution visualization of adipocyte crystallization, offering a potential tool for optimizing selective cryolipolysis treatments. This technology could improve safety and efficacy by providing real-time feedback on tissue response, facilitating a better understanding of the cooling-induced fat reduction process.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 3","pages":"035002"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895999/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remote sensing of alcohol consumption using machine learning speckle pattern analysis.
IF 3 3区 医学
Journal of Biomedical Optics Pub Date : 2025-03-01 Epub Date: 2025-03-04 DOI: 10.1117/1.JBO.30.3.037001
Doron Duadi, Avraham Yosovich, Marianna Beiderman, Sergey Agdarov, Nisan Ozana, Yevgeny Beiderman, Zeev Zalevsky
{"title":"Remote sensing of alcohol consumption using machine learning speckle pattern analysis.","authors":"Doron Duadi, Avraham Yosovich, Marianna Beiderman, Sergey Agdarov, Nisan Ozana, Yevgeny Beiderman, Zeev Zalevsky","doi":"10.1117/1.JBO.30.3.037001","DOIUrl":"10.1117/1.JBO.30.3.037001","url":null,"abstract":"<p><strong>Significance: </strong>Alcohol consumption monitoring is essential for forensic and healthcare applications. While breath and blood alcohol concentration sensors are currently the most common methods, there is a growing need for faster, non-invasive, and more efficient assessment techniques. The rationale for our binary classification relates to law enforcement applications in countries with strict limits on alcohol consumption such as China, which seeks to prevent driving with even the smallest amount of alcohol in the bloodstream.</p><p><strong>Aim: </strong>We propose a remote optical technique for assessing alcohol consumption using speckle pattern analysis, enhanced by machine learning for binary classification. This method offers remote and fast alcohol consumption evaluation without requiring before and after comparisons.</p><p><strong>Approach: </strong>Our experimental setup includes a laser directed toward the subject's radial artery, a camera capturing defocused speckle pattern images of the illuminated area, and a computer. Participants consumed alcohol and were tested periodically. We developed a machine learning classification model that performs automatic feature selection based on temporal analysis of the speckle patterns. The model was evaluated using various labeling schemes: classification with five labels, consolidation to three labels by merging similar labels, and three different binary classifications cases (\"Alcohol\" or \"No alcohol\").</p><p><strong>Results: </strong>Our classification models showed improving accuracy as we reduced the number of labels. The initial five-label model achieved 61% accuracy. When consolidated into three labels, the models achieved accuracies of 74% and 85% for the two cases. The binary classification models performed best, with model A achieving 91% accuracy and 97% specificity, model B achieving 83% accuracy, and model C achieving 88% accuracy with 99% sensitivity.</p><p><strong>Conclusions: </strong>Our binary classification model C can successfully distinguish between pre- and post-alcohol consumption with high sensitivity and accuracy. This performance is particularly valuable for clinical and forensic applications, where minimizing false negatives is crucial.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 3","pages":"037001"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143557094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信