{"title":"Bioceramic Scaffolds for Bone Repair and Regeneration: A Comprehensive Review","authors":"Noor A. Al-Mohammedawi, Shihab Zaidan, J. Kashan","doi":"10.53293/jasn.2024.7223.1265","DOIUrl":"https://doi.org/10.53293/jasn.2024.7223.1265","url":null,"abstract":"","PeriodicalId":15241,"journal":{"name":"Journal of Applied Sciences and Nanotechnology","volume":"116 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141361848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis and Characterization of Perovskite Na0.5Bi0.5Ti0.94Fe0.06O2.97 Film for Photovoltaic Applications","authors":"Husam Nahedh, Odai Salman, Mukhlis M Ismail","doi":"10.53293/jasn.2024.7238.1269","DOIUrl":"https://doi.org/10.53293/jasn.2024.7238.1269","url":null,"abstract":"","PeriodicalId":15241,"journal":{"name":"Journal of Applied Sciences and Nanotechnology","volume":"143 2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141399925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zeena R. Rhoomi, Duha Ahmed, Majid S. Jabir, Anjan Kumar
{"title":"Synthesis and Evaluation of Bi2WO6-MWCNT Nanocomposites for Antibacterial Applications against Multidrug-Resistant Pseudomonas Aeruginosa","authors":"Zeena R. Rhoomi, Duha Ahmed, Majid S. Jabir, Anjan Kumar","doi":"10.53293/jasn.2024.7258.1272","DOIUrl":"https://doi.org/10.53293/jasn.2024.7258.1272","url":null,"abstract":"","PeriodicalId":15241,"journal":{"name":"Journal of Applied Sciences and Nanotechnology","volume":"54 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141415625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing Gas Sensing Performance through Laser Ablation Characterization of Silver@Gold Bimetallic Nanoparticles","authors":"Yasamen Khadim, Uday M. Nayef, F. Mutlak","doi":"10.53293/jasn.2023.7137.1252","DOIUrl":"https://doi.org/10.53293/jasn.2023.7137.1252","url":null,"abstract":"This investigation analyzes the impact of a laser pulse energy set at 700 millijoules per pulse on silver, gold, and silver@gold nanoparticles deposited onto porous silicon (PS). Our primary objective is to discern optimal conditions by comprehensively evaluating their influence on structural, electrical, morphological, and optical characteristics. Employing pulsed laser ablation in liquid, an Nd:YAG laser featuring a 10-nanosecond pulse width and a 1064 nm wavelength is utilized for nanoparticle creation. X-ray diffraction analysis (XRD) is employed to affirm the crystalline growth of core-shell nanoparticles, with distinct peaks in the data confirming the presence of both Au and Ag nanoparticles. Morphological analysis reveals a robust attachment between the nanoparticles and the porous silicon layer, indicating structural stability. The UV–vis spectra exhibit a localized surface plasmon resonance (LSPR) band within the 412–521 nm range. Notably, with an increase in gold concentration, the two peaks of the LSPR band converge into a singular peak. Comparison of the photoluminescence emission spectra of the PS substrate and NPs/PS demonstrates a significant broadening of the emission band in PS,","PeriodicalId":15241,"journal":{"name":"Journal of Applied Sciences and Nanotechnology","volume":"226 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140469800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shanaz H. Ahmed, Awham M. Hameed, Khalida F. Al-azawi
{"title":"Polymer-Impregnated Cement Mortar: Effects of PEG, PAM, and PVA on Mechanical Properties","authors":"Shanaz H. Ahmed, Awham M. Hameed, Khalida F. Al-azawi","doi":"10.53293/jasn.2024.7089.1241","DOIUrl":"https://doi.org/10.53293/jasn.2024.7089.1241","url":null,"abstract":"The brittleness and porosity of cement mortar leads to low compressive, flexural, and tensile strengths and poor hardness, making it susceptible to environmental degradation. This study aimed to improve the mechanical and physical properties of cement mortar using a simple and cost-effective approach of impregnating pre-cured hardened mortar with polymers. Three polymers - polyethylene glycol (PEG), polyacrylamide (PAM), and polyvinyl alcohol (PVA) - were used for impregnation. The polymers were blended with a magnetic stirrer and the impregnation was performed via three methods: vacuum, ultrasound, and 24-hour immersion. The results showed significant improvements in mechanical and physical properties. PEG-impregnated samples exhibited the highest compressive strength (24.47 MPa), flexural strength (1.38 MPa), and splitting tensile strength (2.08 MPa) compared to reference samples with 17 MPa, 0.52 MPa, and 1.35 MPa respectively. PAM-impregnated cement mortar displayed the highest hardness value of 81 versus 70.08 for the reference sample. Optimal results were achieved via the vacuum method, with increases in bulk density. The polymer impregnation filled pores and improved bonding, enhancing the mechanical properties of the brittle cement mortar.","PeriodicalId":15241,"journal":{"name":"Journal of Applied Sciences and Nanotechnology","volume":"1130 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140467203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physical and Structural Properties of Porous Kaolin/Co-Ferrite for Water Treatment","authors":"Wasan Ziedan, Mukhlis Ismail, Wafaa A. Hussain","doi":"10.53293/jasn.2024.7103.1245","DOIUrl":"https://doi.org/10.53293/jasn.2024.7103.1245","url":null,"abstract":"Aqueous solutions with heavy metals such as Cr (VI), Pb, and Cd (II) can have an adverse effect on human health because of their toxicity. As a result, it is important to remove these heavy metals from the aquatic environment to save the human healthy. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and field-emission scanning electron microscopy (FE-SEM) used in this research to characterize cobalt ferrite (CoFe 2 O 4 ) nanoparticles and confirm the structure of Co-Fe 2 O 4 . These particles were used to make porous samples and burned at 1050 °C in mixtures of (0, 3, 5, 7, and 10) wt.% of cobalt ferrite and kaolin with 20 wt.% of charcoal. These samples serve as adsorbents that remove Pb from the wastewater. The highest rates of removal were confirmed using various treatments at (pH 3, 7, and 9). A Williamson-Hall plot was used to determine the crystal size (33) nm. The FT-IR spectra exhibited spinel-ferrite characteristics. Studies using FE-SEM demonstrated that the sample was in Nano crystalline. Using a vibrating sample magnetometer (VSM), different magnetic properties are taken from the hysteresis loops such as saturation magnetization (Ms) and remanence (Mr) and coercivity (","PeriodicalId":15241,"journal":{"name":"Journal of Applied Sciences and Nanotechnology","volume":"23 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140463977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of High-Performance Antibacterial Magnesium Oxide Nanostructures through Laser Ablation","authors":"S. Abbas, Adawiya Hadier, S. Al-Musawi, Bakr Taha","doi":"10.53293/jasn.2024.7213.1262","DOIUrl":"https://doi.org/10.53293/jasn.2024.7213.1262","url":null,"abstract":"In this study, we synthesized magnesium oxide (MgO) nano flakes (NFs) through pulsed laser ablation of magnesium ribbons, investigating their potent antibacterial properties for potential biomedical applications. Thorough characterization utilizing advanced analytical techniques verified the phase purity and functionality of the fabricated MgO NFs. Results revealed a distinctive flake-like structure with an average diameter of 100-400 nm and a slender wall thickness of 24 nm. The efficiency of the laser ablation method was validated by EDX imaging, showing high purity in the MgO sample. XRD analysis further confirmed the polycrystalline nature of MgO NFs, with dominant peaks at 2θ values of 38.86°, 59.46°, 62.83°, and 73.87° corresponding to (111), (110), (220), and (311) diffractions, respectively. UV-visible spectroscopy exhibited a broad absorption peak, and Tauc's formula yielded an energy band gap of 5.8 eV. FTIR spectroscopy detected Mg– O–Mg bending vibration, O−H stretching vibration, O=C=O stretching, and O−H bending vibration. Optimized MgO-NFs demonstrated remarkable antibacterial efficacy against both gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli) bacteria. Maximum antibacterial activity was observed at a high MgO NFs concentration (200 µg/ml), resulting in 15 mm ±0.5 mm and 16 mm ±0.5 mm inhibition zones for E. coli and S. aureus, respectively. The minimum inhibitory concentration (MIC) for both pathogens was determined to be 25 µg/ml, emphasizing the promising antimicrobial potential of the MgO NFs.","PeriodicalId":15241,"journal":{"name":"Journal of Applied Sciences and Nanotechnology","volume":"1047 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140467416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Review on the Kesterite Cu2ZnSnS4 Prepared by Solvo/ Hydrothermal Method","authors":"Nabaa H. Allawi, Selma M. H. Al-Jawad","doi":"10.53293/jasn.2024.7099.1244","DOIUrl":"https://doi.org/10.53293/jasn.2024.7099.1244","url":null,"abstract":"Cu 2 ZnSnS 4 (CZTS) is a promising material for use in solar cells. The distinctive characteristics of this substance include its abundance on earth, low cost, non-toxicity, high absorption coefficient, p-type conductivity, and ideal band gap. CZTS has a stannite (ST) and kesterite (KS) crystal structure. Kesterite has more excellent thermodynamic stability compared to stannite. Consequently, CZTS most frequently occurs in this era. Sputtering, thermal evaporation, pulsed laser deposition, spray pyrolysis, chemical vapour deposition, spin coating, electrodeposition, SILAR, sol-gel, solvothermal, and hydrothermal are among the several processes employed for the production of CZTS thin films. The solvothermal and hydrothermal processes are commonly used to produce high-quality nanocrystals with unique morphology, crystallographic structure, and cost-efficient production.Furthermore, the solvothermal and hydrothermal techniques were employed to produce various categories of photovoltaic devices utilising CZTS, including photoelectrochemical cells, dye-sensitised solar cells, perovskite solar cells, and heterojunction solar cells. In addition, the solvothermal and hydrothermal methods were used to fabricate other types of photovoltaic devices using CZTS, such as photoelectrochemical cells, dye-sensitised solar cells, perovskite solar cells, and heterojunction solar cells. Additionally, it provides a survey on using CZTS in photovoltaic applications, which are produced by hydrothermal and solvothermal techniques. The article also addresses the obstacles encountered in implementing these applications. Lastly, it provides the opportunity to identify remedies for these difficulties.","PeriodicalId":15241,"journal":{"name":"Journal of Applied Sciences and Nanotechnology","volume":"55 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140467893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmed H. Oleiwi, Akram Jabur, Q. Alsalhy, Suriani Binti Abu Bakar
{"title":"Morphology Characterization of Electrospun Polystyrene Membranes","authors":"Ahmed H. Oleiwi, Akram Jabur, Q. Alsalhy, Suriani Binti Abu Bakar","doi":"10.53293/jasn.2023.7010.1225","DOIUrl":"https://doi.org/10.53293/jasn.2023.7010.1225","url":null,"abstract":"The polymeric solution concentration is one of the most critical factors in forming of fibers in electrospinning technology. In this study, various polymeric concentrations of thermoplastic polystyrene are used. At the same time, keeping the other electrospinning process operating parameters (such as flow rate, voltage, capillary to collector distance), solution parameters (such as solution conductivity and molecular weight), and environmental conditions (such as temperature and humidity) constant. Field emission scanning electron microscopy was used to investigate the morphological changes that took place on the surface of the fibres and determine the typical fibre diameter. It was found that as the concentration of polystyrene increased from 15% to 30%, the average pore size increased from (0.5m and 0.44m) to (2.7m and 2.6m). The FT-IR demonstrated the main chemical bonds in polystyrene membranes and the change in peak intensity caused by increasing the polymeric concentration. According to contact angle measurements, which examine the change in hydrophobic properties, the hydrophobicity of membranes decreases as the water contact angle falls from 135 to 116 with increasing the polymeric concentration from 15","PeriodicalId":15241,"journal":{"name":"Journal of Applied Sciences and Nanotechnology","volume":"6 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139609593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}