Journal of biochemistry最新文献

筛选
英文 中文
CDP-DAG synthesis by peripheral membrane-bound Tam41-type enzymes. 外周膜结合的 Tam41 型酶合成 CDP-DAG。
IF 2.1 4区 生物学
Journal of biochemistry Pub Date : 2024-09-03 DOI: 10.1093/jb/mvae046
Koji Okamoto
{"title":"CDP-DAG synthesis by peripheral membrane-bound Tam41-type enzymes.","authors":"Koji Okamoto","doi":"10.1093/jb/mvae046","DOIUrl":"10.1093/jb/mvae046","url":null,"abstract":"<p><p>Cytidine diphosphate diacylglycerol (CDP-DAG) is a critical intermediate that is converted to multiple phospholipids in prokaryotes and eukaryotes. In budding yeast, CDP-DAG synthesis from cytidine triphosphate (CTP) and phosphatidic acid (PA) is catalyzed by the membrane-integrated protein Cds1 in the endoplasmic reticulum and the peripheral membrane-bound protein Tam41 in mitochondria. Although a recent study revealed that the fission yeast SpTam41 consists of a nucleotidyltransferase domain and a winged helix domain, forming an active-site pocket for CTP binding between the two domains together with a C-terminal amphipathic helix for membrane association, how CTP and Mg 2+, a most-favoured divalent cation, are accommodated with PA remains obscure. A more recent report by Kimura et al. (J. Biochem. 2022; 171:429-441) solved the crystal structure of FbTam41, a functional ortholog from a Firmicutes bacterium, with CTP-Mg 2+, successfully providing a detailed molecular view of CDP-DAG synthesis. In this commentary, our current understanding of Tam41-mediated reaction is discussed.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"175-177"},"PeriodicalIF":2.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurodegenerative diseases associated with the disruption of proteostasis and their therapeutic strategies using chemical chaperones. 与蛋白稳态破坏有关的神经退行性疾病及其利用化学伴侣的治疗策略。
IF 2.1 4区 生物学
Journal of biochemistry Pub Date : 2024-09-03 DOI: 10.1093/jb/mvae048
Takashi Sugiyama, Hideki Nishitoh
{"title":"Neurodegenerative diseases associated with the disruption of proteostasis and their therapeutic strategies using chemical chaperones.","authors":"Takashi Sugiyama, Hideki Nishitoh","doi":"10.1093/jb/mvae048","DOIUrl":"10.1093/jb/mvae048","url":null,"abstract":"<p><p>Aberrant proteostasis is thought to be involved in the pathogenesis of neurodegenerative diseases. Some proteostasis abnormalities are ameliorated by chaperones. Chaperones are divided into three groups: molecular, pharmacological and chemical. Chemical chaperones intended to alleviate stress in organelles, such as the endoplasmic reticulum (ER), are now being administered clinically. Of the chemical chaperones, 4-phenylbutyrate (4-PBA) has been used as a research reagent, and its mechanism of action includes chaperone effects and the inhibition of histone deacetylase. Moreover, it also binds to the B-site of SEC24 and regulates COPII-mediated transport from the ER. Although its therapeutic effect may not be strong, elucidating the mechanism of action of 4-PBA may contribute to the identification of novel therapeutic targets for neurodegenerative diseases.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"179-186"},"PeriodicalIF":2.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The action of coenzyme B12-dependent diol dehydratase on 3,3,3-trifluoro-1,2-propanediol results in elimination of all the fluorides with formation of acetaldehyde. 辅酶 B12 依赖性二元醇脱水酶对 3,3,3-三氟-1,2-丙二醇的作用会消除所有氟化物并形成乙醛。
IF 2.1 4区 生物学
Journal of biochemistry Pub Date : 2024-09-03 DOI: 10.1093/jb/mvae047
Koichi Mori, Bernard T Golding, Tetsuo Toraya
{"title":"The action of coenzyme B12-dependent diol dehydratase on 3,3,3-trifluoro-1,2-propanediol results in elimination of all the fluorides with formation of acetaldehyde.","authors":"Koichi Mori, Bernard T Golding, Tetsuo Toraya","doi":"10.1093/jb/mvae047","DOIUrl":"10.1093/jb/mvae047","url":null,"abstract":"<p><p>3,3,3-Trifluoro-1,2-propanediol undergoes complete defluorination in two distinct steps: first, the conversion into 3,3,3-trifluoropropionaldehyde catalyzed by adenosylcobalamin (coenzyme B12)-dependent diol dehydratase; second, non-enzymatic elimination of all three fluorides from this aldehyde to afford malonic semialdehyde (3-oxopropanoic acid), which is decarboxylated to acetaldehyde. Diol dehydratase accepts 3,3,3-trifluoro-1,2-propanediol as a relatively poor substrate, albeit without significant mechanism-based inactivation of the enzyme during catalysis. Optical and electron paramagnetic resonance (EPR) spectra revealed the steady-state formation of cob(II)alamin and a substrate-derived intermediate organic radical (3,3,3-trifluoro-1,2-dihydroxyprop-1-yl). The coenzyme undergoes Co-C bond homolysis initiating a sequence of reaction by the generally accepted pathway via intermediate radicals. However, the greater steric size of trifluoromethyl and especially its negative impact on the stability of an adjacent radical centre compared to a methyl group has implications for the mechanism of the diol dehydratase reaction. Nevertheless, 3,3,3-trifluoropropionaldehyde is formed by the normal diol dehydratase pathway, but then undergoes non-enzymatic conversion into acetaldehyde, probably via 3,3-difluoropropenal and malonic semialdehyde.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"245-254"},"PeriodicalIF":2.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex chromosome cycle as a mechanism of stable sex determination. 作为稳定性别决定机制的性染色体周期。
IF 2.1 4区 生物学
Journal of biochemistry Pub Date : 2024-07-31 DOI: 10.1093/jb/mvae045
Shun Hayashi, Takuya Abe, Takeshi Igawa, Yukako Katsura, Yusuke Kazama, Masafumi Nozawa
{"title":"Sex chromosome cycle as a mechanism of stable sex determination.","authors":"Shun Hayashi, Takuya Abe, Takeshi Igawa, Yukako Katsura, Yusuke Kazama, Masafumi Nozawa","doi":"10.1093/jb/mvae045","DOIUrl":"10.1093/jb/mvae045","url":null,"abstract":"<p><p>Recent advances in DNA sequencing technology have enabled the precise decoding of genomes in non-model organisms, providing a basis for unraveling the patterns and mechanisms of sex chromosome evolution. Studies of different species have yielded conflicting results regarding the traditional theory that sex chromosomes evolve from autosomes via the accumulation of deleterious mutations and degeneration of the Y (or W) chromosome. The concept of the 'sex chromosome cycle,' emerging from this context, posits that at any stage of the cycle (i.e., differentiation, degeneration, or loss), sex chromosome turnover can occur while maintaining stable sex determination. Thus, understanding the mechanisms that drive both the persistence and turnover of sex chromosomes at each stage of the cycle is crucial. In this review, we integrate recent findings on the mechanisms underlying maintenance and turnover, with a special focus on several organisms having unique sex chromosomes. Our review suggests that the diversity of sex chromosomes in the maintenance of stable sex determination is underappreciated and emphasizes the need for more research on the sex chromosome cycle.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"81-95"},"PeriodicalIF":2.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of two critical amino acid residues in short-chain aldehyde-responsive odorant receptors. 鉴定短链醛反应气味受体中的两个关键氨基酸残基。
IF 2.1 4区 生物学
Journal of biochemistry Pub Date : 2024-07-31 DOI: 10.1093/jb/mvae033
Reina Kanemaki, Toshiya Hayakawa, Haruto Kudo, Masafumi Yohda, Yosuke Fukutani
{"title":"Identification of two critical amino acid residues in short-chain aldehyde-responsive odorant receptors.","authors":"Reina Kanemaki, Toshiya Hayakawa, Haruto Kudo, Masafumi Yohda, Yosuke Fukutani","doi":"10.1093/jb/mvae033","DOIUrl":"10.1093/jb/mvae033","url":null,"abstract":"<p><p>Mammalian odorant receptors (ORs) are crucial for detecting a broad spectrum of odorants, yet their functional expression poses a significant challenge, often requiring Receptor-transporting proteins (RTPs). This study examines mouse Olfr733 and Olfr732, which, despite high homology, show different functional expression profiles in heterologous cell systems. Our research aimed to identify key amino acids impacting Olfr733's functional expression. We discovered that G112FBW3.40 and L148PBW4.49 (Ballesteros-Weinstein numbering in superscript) substitutions in Olfr732 markedly enhance its RTP-independent expression and ligand responsiveness, mirroring Olfr733. These substitutions, particularly Phe112 and Leu148, are crucial for aldehyde recognition and membrane localization in Olfr733, respectively. While Olfr732-type ORs are conserved across species, Olfr733-types, unique to specific rodents, appear to have evolved from Olfr732, with Pro148 enhancing membrane expression and aldehyde sensitivity. Mouse ORs with ProBW4.49 tend to exhibit improved membrane expression compared to their paralogs, especially when co-expressed with RTP1S. This study concludes that the Pro residue in the fourth transmembrane domain significantly contributes to the structural stability of certain olfactory receptors, highlighting the intricate molecular mechanisms underlying OR functionality and evolution.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"119-130"},"PeriodicalIF":2.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140335732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytotoxic stress caused by azalamellarin D (AzaD) interferes with cellular protein translation by targeting the nutrient-sensing kinase mTOR. 氮杂霉素 D(AzaD)引起的细胞毒性压力通过靶向营养感应激酶 mTOR 干扰细胞蛋白质翻译。
IF 2.1 4区 生物学
Journal of biochemistry Pub Date : 2024-07-31 DOI: 10.1093/jb/mvae038
Tirawit Meerod, Rapeepat Sangsuwan, Kanawut Klumthong, Bunkuea Chantrathonkul, Nadgrita Phutubtim, Piyarat Govitrapong, Somsak Ruchirawat, Poonsakdi Ploypradith, Pattarawut Sopha
{"title":"Cytotoxic stress caused by azalamellarin D (AzaD) interferes with cellular protein translation by targeting the nutrient-sensing kinase mTOR.","authors":"Tirawit Meerod, Rapeepat Sangsuwan, Kanawut Klumthong, Bunkuea Chantrathonkul, Nadgrita Phutubtim, Piyarat Govitrapong, Somsak Ruchirawat, Poonsakdi Ploypradith, Pattarawut Sopha","doi":"10.1093/jb/mvae038","DOIUrl":"10.1093/jb/mvae038","url":null,"abstract":"<p><p>Analogs of pyrrole alkaloid lamellarins exhibit anticancer activity by modulating multiple cellular events. Lethal doses of several lamellarins were found to enhance autophagy flux in HeLa cells, suggesting that lamellarins may modulate protein homeostasis through the interference of proteins or kinases controlling energy and nutrient metabolism. To further delineate molecular mechanisms and their targets, our results herein show that azalamellarin D (AzaD) cytotoxicity could cause translational attenuation, as indicated by a change in eIF2α phosphorylation. Intriguingly, acute AzaD treatment promoted the phosphorylation of GCN2, a kinase that transduces the integrated stress response (ISR), and prolonged exposure to AzaD could increase the levels of the phosphorylated forms of eIF2α and the other ISR kinase protein kinase R (PKR). However, the effects of AzaD on ISR signalling were marginally abrogated in cells with genetic deletion of GCN2 and PKR, and evaluation of protein target engagement by cellular thermal shift assay (CETSA) revealed no significant interaction between AzaD and ISR kinases. Further investigation revealed that acute AzaD treatment negatively affected mechanistic target of rapamycin (mTOR) phosphorylation and signalling. The analyses by CETSA and computational modelling indicated that mTOR may be a possible protein target for AzaD. These findings indicate the potential for developing lamellarins as novel agents for cancer treatment.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"139-153"},"PeriodicalIF":2.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140854934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of eyestalk ablation and seawater temperature on d-glutamate levels in the reproductive tissues of male kuruma prawn Marsupenaeus japonicus. 眼柄消融和海水温度对雄性日本对虾生殖组织中 D-谷氨酸水平的影响
IF 2.1 4区 生物学
Journal of biochemistry Pub Date : 2024-07-31 DOI: 10.1093/jb/mvae036
Naoko Yoshikawa, Natsuki Yoshitomi, Kazuki Nakada
{"title":"Effects of eyestalk ablation and seawater temperature on d-glutamate levels in the reproductive tissues of male kuruma prawn Marsupenaeus japonicus.","authors":"Naoko Yoshikawa, Natsuki Yoshitomi, Kazuki Nakada","doi":"10.1093/jb/mvae036","DOIUrl":"10.1093/jb/mvae036","url":null,"abstract":"<p><p>D-Glutamate, a novel d-amino acid found in animal tissues, exclusively exists in the male reproductive tissues of the kuruma prawn, Marsupenaeus japonicus. Herein, changes in the d-glutamate content were determined in the male reproductive tissues of M. japonicus during acclimation to breeding seawater temperatures of 18-22°C and unilateral eyestalk ablation. The d-glutamate content in the testis increased with increasing seawater temperature and with unilateral eyestalk ablation. This suggests that both stimulations induced d-glutamate synthesis in the testis. Although the d-alanine content in the testis increased after unilateral eyestalk ablation, it did not change with elevated seawater temperature. Furthermore, we determined the d-glutamate distribution in the M. japonicus spermatophore. This indicates that d-glutamate is crucial in prawn fertilization.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"167-174"},"PeriodicalIF":2.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intracellular acidification and glycolysis modulate inflammatory pathway in senescent cells. 细胞内酸化和糖酵解调节衰老细胞的炎症途径
IF 2.1 4区 生物学
Journal of biochemistry Pub Date : 2024-07-31 DOI: 10.1093/jb/mvae032
Satoshi Kawakami, Yoshikazu Johmura, Makoto Nakanishi
{"title":"Intracellular acidification and glycolysis modulate inflammatory pathway in senescent cells.","authors":"Satoshi Kawakami, Yoshikazu Johmura, Makoto Nakanishi","doi":"10.1093/jb/mvae032","DOIUrl":"10.1093/jb/mvae032","url":null,"abstract":"<p><p>Senescent cells accumulate in various organs with ageing, and its accumulation induces chronic inflammation and age-related physiological dysfunctions. Several remodelling of intracellular environments have been identified in senescent cells, including enlargement of cell/nuclear size and intracellular acidification. Although these alterations of intracellular environments were reported to be involved in the unique characteristics of senescent cells, the contribution of intracellular acidification to senescence-associated cellular phenotypes is poorly understood. Here, we identified that the upregulation of TXNIP and its paralog ARRDC4 as a hallmark of intracellular acidification in addition to KGA-type GLS1. These genes were also upregulated in response to senescence-associated intracellular acidification. Neutralization of the intracellular acidic environment ameliorated not only senescence-related upregulation of TXNIP, ARRDC4 and KGA but also inflammation-related genes, possibly through suppression of PDK-dependent anaerobic glycolysis. Furthermore, we found that expression of the intracellular acidification-induced genes, TXNIP and ARRDC4, correlated with inflammatory gene expression in heterogeneous senescent cell population in vitro and even in vivo, implying that the contribution of intracellular pH to senescence-associated cellular features, such as SASP.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"97-108"},"PeriodicalIF":2.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289320/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140335733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Essential dextrin structure as donor substrate for 4-α-glucanotransferase in glycogen debranching enzyme. 作为糖原去支链酶中 4-α-葡聚糖转移酶供体底物的重要糊精结构
IF 2.1 4区 生物学
Journal of biochemistry Pub Date : 2024-07-31 DOI: 10.1093/jb/mvae030
Rentaro Uno, Yasushi Makino, Hiroshi Matsubara
{"title":"Essential dextrin structure as donor substrate for 4-α-glucanotransferase in glycogen debranching enzyme.","authors":"Rentaro Uno, Yasushi Makino, Hiroshi Matsubara","doi":"10.1093/jb/mvae030","DOIUrl":"10.1093/jb/mvae030","url":null,"abstract":"<p><p>Glycogen debranching enzyme is a single polypeptide with distinct catalytic sites for 4-α-glucanotransferase and amylo-α-1,6-glucosidase. To allow phosphorylase to degrade the inner tiers of highly branched glycogen, 4-α-glucanotransferase converts the phosphorylase-limit biantennary branch G-G-G-G-(G-G-G-G↔)G-G- (G: d-glucose, hyphens: α-1,4-linkages; double-headed arrow: α-1,6-linkage) into the G-G-G-G-(G↔)G-G- residue, which is then subjected to amylo-α-1,6-glucosidase to release the remaining G↔ residue. However, while the essential side-chain structure of the 4-α-glucanotransferase donor substrate has been determined to be the G-G-G-G↔ residue (Watanabe, Y., et al. (2008) J. Biochem.143, 435-440), its essential main-chain structure remains to be investigated. In this study, we probed the 4-α-glucanotransferase donor-binding region using novel fluorogenic dextrins Gm-(G4↔)G-Gn-F (F: 1-deoxy-1-[(2-pyridyl)amino]-d-glucitol) and maltohexaose (G6) as the donor and acceptor substrates, respectively. 4-α-Glucanotransferase exhibited maximum activity towards G4-(G4↔)G-F and G4-(G4↔)G-G-F, indicating that recognition of the G4-(G4↔)G-moiety was essential for full enzyme function. Notably, when the 4-α-glucanotransferase activity towards G4-(G4↔)G-G-F was taken as unity, those towards nonbranching dextrins were < 0.001. This indicated that the disproportionation activities towards maltooligosaccharides (Gm) are abnormal behaviours of 4-α-glucanotransferase. Notably, however, these activities have been traditionally measured to identify the 4-α-glucanotransferase mutations causing glycogen storage disease type III. This study provides a basis for more accurate identification.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"109-117"},"PeriodicalIF":2.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140158225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure-based design, biophysical characterization, and biochemical application of the heterodimeric affinity purification tag based on the Schistosoma japonicum glutathione-S-transferase (SjGST) homodimer. 基于日本血吸虫谷胱甘肽-S-转移酶(SjGST)同源二聚体的异源二聚体亲和纯化标签的结构设计、生物物理特征和生化应用。
IF 2.1 4区 生物学
Journal of biochemistry Pub Date : 2024-07-01 DOI: 10.1093/jb/mvae028
Yan Du, Yoshihiro Kobashigawa, Kyo Okazaki, Mizuki Ogawa, Tomoyuki Kawaguchi, Takashi Sato, Hiroshi Morioka
{"title":"Structure-based design, biophysical characterization, and biochemical application of the heterodimeric affinity purification tag based on the Schistosoma japonicum glutathione-S-transferase (SjGST) homodimer.","authors":"Yan Du, Yoshihiro Kobashigawa, Kyo Okazaki, Mizuki Ogawa, Tomoyuki Kawaguchi, Takashi Sato, Hiroshi Morioka","doi":"10.1093/jb/mvae028","DOIUrl":"10.1093/jb/mvae028","url":null,"abstract":"<p><p>Schistosoma japonicum glutathione-S-transferase (SjGST), the so-called GST-tag, is one of the most widely used protein tags for the purification of recombinant proteins by affinity chromatography. Attachment of SjGST enables the purification of a protein of interest (POI) using commercially available glutathione-immobilizing resins. Here we produced an SjGST mutant pair that forms heterodimers by adjusting the salt bridge pairs in the homodimer interface of SjGST. An MD study confirmed that the SjGST mutant pair did not disrupt the heterodimer formation. The modified SjGST protein pair coexpressed in Escherichia coli was purified by glutathione-immobilized resin. The stability of the heterodimeric form of the SjGST mutant pair was further confirmed by size exclusion chromatography. Surface plasmon resonance measurements unveiled the selective formation of heterodimers within the pair, accompanied by a significant suppression of homodimerization. The heterodimeric SjGST exhibited enzymatic activity in assays employing a commercially available fluorescent substrate. By fusing one member of the heterodimeric SjGST pair with a fluorescent protein and the other with the POI, we were able to conveniently and sensitively detect protein-protein interactions using fluorescence spectroscopy in the pull-down assays. Thus, utilization of the heterodimeric SjGST would be a useful tag for protein science.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"69-80"},"PeriodicalIF":2.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140110365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信