{"title":"Behaviour of New Curved in Plan Composite Reinforced Concrete Beams","authors":"D. Witwit, N. Jasim","doi":"10.33971/bjes.22.2.12","DOIUrl":"https://doi.org/10.33971/bjes.22.2.12","url":null,"abstract":"New composite reinforced concrete beams, in which reinforced concrete component is connected to steel T-section, are proposed. The stirrups of the beam were utilized as shear connectors by passing them through drilled holes in the web of the steel T-section. Experimental test and numerical analysis were conducted to determine the behaviour of such beams when subjected to combined shear, torsion, and bending stresses. Full scale one conventional reinforced concrete curved in plan beam C1, and four composite reinforced concrete ones, C2 to C5, were tested. The degree of shear connection between the two components of beams C2 to C5 was changed by varying the number of stirrups which are used as shear connectors. The increase in load carrying capacity of the composite reinforced concrete beams reached 55 % for beam C4 as compared to that of ordinary reinforced concrete beam. The experimental results demonstrated that the stirrups are very effective in providing the interaction between the two components of the beams. The degree of shear connection emerged not to have effect on the behaviour of tested beams. Three-dimensional finite element analysis was conducted using commercial software ABAQUS. To model the shear connection in composite reinforced concrete beam, the stirrups were connected to the web of the steel T-section by springs at the location of the stirrups. Good agreement is obtained between the results of the experimental tests and the finite element analysis.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"191 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114058632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Analysis of Slotted Wings Using Fluid-Structure Interaction","authors":"M. Hassan, R. Laftah, M. Ismael","doi":"10.33971/bjes.22.2.9","DOIUrl":"https://doi.org/10.33971/bjes.22.2.9","url":null,"abstract":"For shorter landing and take-off path in airports, the aircrafts should reduce their speed with keeping high lifting force. This paper is to identify solutions to increase the lift force of the wing significantly under several flight scenarios (such as takeoff and landing) using leading-edge slats and their relationship with the dynamic parameters of the aerodynamic wing. The study is performed by the use of ABAQUS 2016 software. The problem is solved for turbulent flow and 2-dimensional composite wing at constant Reynolds’s number of (6.49 × 105) and constant boundary conditions. Various depths have been used for the auxiliary airfoil at constant width and gap. All stresses at the wing base were obtained. The pressure distribution on the airfoil surface was determined, air velocity distribution was tracked over the surface, lift and drag forces and their coefficients were computed. The results show that the highest value of the lift coefficient is 0.489 at the depth (-3 %) of the wing chord, it decreases when the depth of the slat becomes zero %, and the rise returns with increasing depth to (4 %), but it does not reach the maximum value, while the highest drag coefficient was (1.89) at depth (4 %) of the wing chord. The maximum value of Von Mises stress was found at depth of 4 % with value of 1.605 × 105 Pa.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126250677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Study of Jet Impingement on Heated Sink Covered by a Porous Layer","authors":"M. Thani, M. Ismael","doi":"10.33971/bjes.22.2.1","DOIUrl":"https://doi.org/10.33971/bjes.22.2.1","url":null,"abstract":"This numerical study aims to enhance the heat transfer efficiency by dissipating the heat Emitted from electronic processors. A jet impingement technique is utilized with porous layer covering a metal fin as a heat sink. Forced convection and normal convection (due to the buoyancy effect) are taken into consideration. The two equations model (Local Thermal Non-Equilibrium LTNE) employed to describe the energy equations of the two phases of the porous surface. Finite Element Method (FEM) used to discretize these equations to obtain the numerical solution. To make this study closest to the reality, constant heat flux boundary condition is applied underneath the metallic heat sink. The geometry comprises of three domains: Free flow channel, Porous layer and Metal fined heat sink. In order to simulate the heat transfer, isotherms; streamlines and Nusselt number have been considered. Investigation has been done by inspecting the effects of the pertinent non-dimensional parameters such as: Reynolds number (Re = 100-900), Darcy number (Da = 10-1-10-6), Richardson number (Ri = 0.1-100) and Porosity (ε = 0.85-0.95). The results show that increasing Re and decreasing ε lead to enhance Nusselt number. Richardson number below 100 has no significant effects on Nu. At Re above 400, Nusselt number proportional with Darcy number. The enhancement of Nusselt number is found to be 250 % by increasing Re from 100 to 900, 290 % by decreasing ε from 0.95 to 0.85 and about 13 % by increasing Darcy number from 10-6 to 10-1.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129585573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Spanwise Semicircular Groove on NACA 0012 Airfoil","authors":"Mahdi Almusawi, Q. Rishack, Mohammed Al-fahham","doi":"10.33971/bjes.22.2.4","DOIUrl":"https://doi.org/10.33971/bjes.22.2.4","url":null,"abstract":"The efficiency of an airfoil can be improved by adjusting its surface. CFD software was used to investigate a 2D airfoil with and without a spanwise semicircular groove on the upper surface. NACA0012 airfoils with and without grooves were analyzed using the k-ω turbulence model. The lift and drag coefficients were used to compared. To investigate the effect of groove location on airfoil efficiency, a groove was added in various locations and compared to a smooth airfoil. The flow velocity remained constant at 20 m/s at all angles of attack (AOA). According to this study, which used ANSYS software to simulate it numerically, the presence of a semicircular groove affects the aerodynamics of the airfoil, resulting in an improved efficiency coefficient of lift, which has risen by 2.25 percent, while the drag coefficient has decreased by 4.32 percent.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114881445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study the Effect of Reinforcing Kevlar Fibers with Carbon Fibers and Glass Fibers on the Performance of the Athletic Prosthetic Foot","authors":"H. Talla, Abdul Kareem Hassan, J. Oleiwi","doi":"10.33971/bjes.22.2.7","DOIUrl":"https://doi.org/10.33971/bjes.22.2.7","url":null,"abstract":"In this research, the mechanical properties were studied from the experimental, theoretical, and numerical aspects of the sports prosthetic foot for the purpose of providing a sporty prosthetic limb with high performance, easy to use and an appropriate financial cost to use by amputees who have lost their lower limbs (amputation below the knee) in practicing their sports activities and overcoming physical disability. The dimensions of the blades were calculated based on side profiles from European patent specifications. The chosen fibers have high strength, are light in weight, and can be purchased for a lower price than the materials that are used in the production of the sports prosthetic feet that are already on the market and are produced by specialized companies such as Ottobock and Ossur. Six laminates of the composite material consisting of matrix orthocryl lamination 80:20 pro reinforced with different fibers (Kevlar fibers, carbon fibers, glass fibers, and perlon fibers) were fabricated in the form of rectangles using the vacuum system and then cut to the required dimensions using a CNC machine. The density and volume fraction of the samples and the use of the rule of mixtures to calculate the mechanical properties of the laminates were calculated and entered into the ANSYS program. Then the boundary conditions were applied to the athlete's prosthetic foot and the total deformation, and the total strain energy was calculated to find out the best laminates in the athlete's foot industry. It was noticed that the laminates reinforced with carbon fibers were better than the laminates reinforced with glass fibers in terms of Young’s Modulus, as well as deformation. The best laminate obtained is (12 K + 4 C).","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"9 23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126664449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermal Analysis of a Perforated Vertical Wellbore","authors":"H. Mohammed, Hussein S. Sultan, Emad A. Khazal","doi":"10.33971/bjes.22.2.2","DOIUrl":"https://doi.org/10.33971/bjes.22.2.2","url":null,"abstract":"A numerical simulation of the effect evaluation of heat loss and temperature distribution along the wellbore is performed, for two models, the first is an open hole (without perforation) and the other is a perforated vertical wellbore. In this study, the Computational Fluid Dynamics (CFD) software code ANSYS FLUENT 15.0 has been used, for simulate a model of 3-D turbulent flow with stander k-ϵ model. The results of this show that, increasing the heat losses leads to an increase in the temperature gradient, while the temperature gradient decreases with increasing inlet main velocity. Also, the temperature of the produced crude oil decreases with increasing the length of the wellbore.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132808643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis and Study Indicators for Quarter Car Model with Two Air Suspension System","authors":"M. Mahmood, A. Nassar, Haider A. F. Mohammad","doi":"10.33971/bjes.22.2.3","DOIUrl":"https://doi.org/10.33971/bjes.22.2.3","url":null,"abstract":"Modeling and simulation of non-linear quarter-car suspension system for two air spring models (traditional and dynamic new air spring) are contrasted in terms of (RMS) sprung mass acceleration, dynamic load coefficient, the vertical displacement, they are compared. Two and three (DOF) of the mathematical quarter models are implemented in MATLAB/Simulink platform. The Ride Comfort (RC), Dynamic Load Coefficient (DLC) and Road Handling (RH) responses are evaluated as objective functions respectively considering a vehicle speed at 72 km/h and road ISO Class B. The obtained results indicate that the vertical displacement, the (RMS) of the sprung mass acceleration, and dynamic load coefficient values with the new air model system decrease by 10.7 %, 30.6 %, and 13.49 % respectively, in comparison to a tradition suspension system, this one gives more comfort and effortless handling.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"141 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128617343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study the Effect of Quenching and Tempering Conditions on the Fatigue Coefficients for Low Carbon Steel","authors":"Azzam D. Hassan, S. Almtori, Atef Nema","doi":"10.33971/bjes.22.2.5","DOIUrl":"https://doi.org/10.33971/bjes.22.2.5","url":null,"abstract":"Four groups of AISI 1020 specimens were heat-treated at 850 °C in a muffle furnace for 30 minutes then quenched in oil. The samples were tempered at 400 °C with a time period for each group as (group B, 2 hours), (group C, 3 hours), and (group D, 4 hours). The mechanical properties of the samples were studied using universal tensile testing equipment and a Brinell hardness testing machine. The hardness values of the quenched samples were calculated from a given modified equation. The torsional fatigue behavior of AISI 1020 was discovered in this investigation for heat-treated specimens and compared with the original specimens. All groups were subjected to an analysis using an optical microscope. Pearlite is formed when is heated in the austenitic region and then cooled below a lower critical temperature. It was concluded that the heat treatment increases the hardness for the specimens while decreased the shear fatigue ductility coefficient. Also, the heat treatment increased the shear fatigue strength coefficient. Furthermore, increasing in the time period of the tempering process was leaded to decrease the coefficient of shear fatigue strength and increased the coefficient of shear fatigue ductility.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133014071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Defects Parameters of Welded Joints on Fatigue Life using Finite Element Analysis","authors":"L. Abdullatif, N. Saleh","doi":"10.33971/bjes.22.2.8","DOIUrl":"https://doi.org/10.33971/bjes.22.2.8","url":null,"abstract":"The present investigation's main goal is to assess butt joint and T-joint plates containing misalignment, undercut and porosity welding defects by studying the influence of the defect’s parameters on the fatigue life. The fatigue life is predicted using ANSYS ver. 19 Software. The results of finite element analysis are used in the regression analysis to find relationship between the fatigue life and defects parameters. The findings demonstrated that finite element modeling and the pervious published experimental tests were in good agreement with maximum error percentage 4 %. The fatigue life differed substantially depending on the defect’s parameters.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130535516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saddam K. Al-raheem, Abdul Kareem Hassan, M. Jweeg
{"title":"Dynamic Properties of Rubber Blends (NR/BR.cis) Under the Effect of Different Blending Ratio and Carbon Black Type","authors":"Saddam K. Al-raheem, Abdul Kareem Hassan, M. Jweeg","doi":"10.33971/bjes.22.2.10","DOIUrl":"https://doi.org/10.33971/bjes.22.2.10","url":null,"abstract":"Due to the wide use of rubber components in different engineering applications such as vibration isolators, engine mounts, car tires, and bridge bearing pads, etc. This rubber component mostly subjected to high levels of vibration and noise which are among the most reasons that lead to the failure of the structures. In the present paper has been performed experimentally to investigate the influences: different content ratios of natural rubber (NR) and polybutadiene (BR.cis) rubber blends [1: (50/50) %, 2: (60/40) %, 3: (70/30) %, 4: (80/20) %, 5: (90/10) %, 6: (100/0) % pphr], and two carbon blacks types (N375, and N220) on the dynamic properties (Rebound Resilience, Damping Time, and Decay Rate). The experimental results showed that the rubber compound that has the blending ratio [1: (50/50) %] has high resilience (low damping), high damping time and high displacement for two carbon black types used in this work. While these properties were improved whenever the rubber blend close to the percentage [5: (90/10) %]. The damping time, amplitude, and resilience of a rubber compound with a blending (90/10) % and carbon black (N220) are decreased by (24.53 %, 36.854 %, and 36.852 %), respectively, compared with a rubber blend that has the blending ratio of (50/50) %.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130929219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}