基于流固耦合的开缝翼数值分析

M. Hassan, R. Laftah, M. Ismael
{"title":"基于流固耦合的开缝翼数值分析","authors":"M. Hassan, R. Laftah, M. Ismael","doi":"10.33971/bjes.22.2.9","DOIUrl":null,"url":null,"abstract":"For shorter landing and take-off path in airports, the aircrafts should reduce their speed with keeping high lifting force. This paper is to identify solutions to increase the lift force of the wing significantly under several flight scenarios (such as takeoff and landing) using leading-edge slats and their relationship with the dynamic parameters of the aerodynamic wing. The study is performed by the use of ABAQUS 2016 software. The problem is solved for turbulent flow and 2-dimensional composite wing at constant Reynolds’s number of (6.49 × 105) and constant boundary conditions. Various depths have been used for the auxiliary airfoil at constant width and gap. All stresses at the wing base were obtained. The pressure distribution on the airfoil surface was determined, air velocity distribution was tracked over the surface, lift and drag forces and their coefficients were computed. The results show that the highest value of the lift coefficient is 0.489 at the depth (-3 %) of the wing chord, it decreases when the depth of the slat becomes zero %, and the rise returns with increasing depth to (4 %), but it does not reach the maximum value, while the highest drag coefficient was (1.89) at depth (4 %) of the wing chord. The maximum value of Von Mises stress was found at depth of 4 % with value of 1.605 × 105 Pa.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis of Slotted Wings Using Fluid-Structure Interaction\",\"authors\":\"M. Hassan, R. Laftah, M. Ismael\",\"doi\":\"10.33971/bjes.22.2.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For shorter landing and take-off path in airports, the aircrafts should reduce their speed with keeping high lifting force. This paper is to identify solutions to increase the lift force of the wing significantly under several flight scenarios (such as takeoff and landing) using leading-edge slats and their relationship with the dynamic parameters of the aerodynamic wing. The study is performed by the use of ABAQUS 2016 software. The problem is solved for turbulent flow and 2-dimensional composite wing at constant Reynolds’s number of (6.49 × 105) and constant boundary conditions. Various depths have been used for the auxiliary airfoil at constant width and gap. All stresses at the wing base were obtained. The pressure distribution on the airfoil surface was determined, air velocity distribution was tracked over the surface, lift and drag forces and their coefficients were computed. The results show that the highest value of the lift coefficient is 0.489 at the depth (-3 %) of the wing chord, it decreases when the depth of the slat becomes zero %, and the rise returns with increasing depth to (4 %), but it does not reach the maximum value, while the highest drag coefficient was (1.89) at depth (4 %) of the wing chord. The maximum value of Von Mises stress was found at depth of 4 % with value of 1.605 × 105 Pa.\",\"PeriodicalId\":150774,\"journal\":{\"name\":\"Basrah journal for engineering science\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basrah journal for engineering science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33971/bjes.22.2.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basrah journal for engineering science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33971/bjes.22.2.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于较短的机场起降路径,飞机应在保持较高升力的情况下降低速度。本文旨在利用前缘板条及其与气动翼动力参数的关系,找出在多种飞行场景(如起飞和降落)下显著提高机翼升力的解决方案。本研究采用ABAQUS 2016软件进行。在恒定雷诺数(6.49 × 105)和恒定边界条件下,求解了紊流和二维复合材料机翼的问题。各种深度已被用于辅助翼型在恒定宽度和间隙。得到了机翼底部的所有应力。确定了翼型表面的压力分布,跟踪了翼型表面的气流速度分布,计算了升力和阻力及其系数。结果表明:升力系数在翼弦深度(- 3%)处达到最大值0.489,当缝板深度为0 %时升力系数减小,随着深度的增加升力系数恢复到(4%),但未达到最大值;阻力系数在翼弦深度(4%)处达到最大值1.89。Von Mises应力在深度为4%时达到最大值,为1.605 × 105 Pa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Analysis of Slotted Wings Using Fluid-Structure Interaction
For shorter landing and take-off path in airports, the aircrafts should reduce their speed with keeping high lifting force. This paper is to identify solutions to increase the lift force of the wing significantly under several flight scenarios (such as takeoff and landing) using leading-edge slats and their relationship with the dynamic parameters of the aerodynamic wing. The study is performed by the use of ABAQUS 2016 software. The problem is solved for turbulent flow and 2-dimensional composite wing at constant Reynolds’s number of (6.49 × 105) and constant boundary conditions. Various depths have been used for the auxiliary airfoil at constant width and gap. All stresses at the wing base were obtained. The pressure distribution on the airfoil surface was determined, air velocity distribution was tracked over the surface, lift and drag forces and their coefficients were computed. The results show that the highest value of the lift coefficient is 0.489 at the depth (-3 %) of the wing chord, it decreases when the depth of the slat becomes zero %, and the rise returns with increasing depth to (4 %), but it does not reach the maximum value, while the highest drag coefficient was (1.89) at depth (4 %) of the wing chord. The maximum value of Von Mises stress was found at depth of 4 % with value of 1.605 × 105 Pa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信