{"title":"Effect of Biopipe Total Flowrate on Venturi Aerator Performance","authors":"H. Jasem, Kifah Khudair","doi":"10.33971/bjes.23.1.1","DOIUrl":"https://doi.org/10.33971/bjes.23.1.1","url":null,"abstract":"There is a vacuum created when water goes past a pipe constriction. Air may be pulled into the main flow by drilling a hole in the pipe near where the vacuum happens. Venturi aerator is an example of the application in action. A vacuum is formed at the suction holes of the Venturi tube when there is a small difference in pressure between the input and output sides. To demonstrate the link between total flow rate and Venturi aerator performance, a Venturi aerator (model 1584) was introduced at a specific point in a Biopipe system. For this purpose, a physical model on a pilot scale was constructed and installed in an existing sewage treatment plant. Dissolved oxygen concentrations were measured at four locations along the Biopipe at different values of wastewater flowrates. The study results showed that raising the total flow rate increased the amount of air injected by the Venturi aerator. When the total flow rate was less than 4 m3/hour, the Venturi aerator stops sucking air and produces negative consequences.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125551961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Hexagonal Boron Nitride Nanoparticles Additions on Corrosion Resistance for Zinc Coatings of Weathering Steel in Rainwater","authors":"Dhurgham Mohsin, H. Lieth, M. Jabbar","doi":"10.33971/bjes.23.1.9","DOIUrl":"https://doi.org/10.33971/bjes.23.1.9","url":null,"abstract":"Zinc and its alloy coatings are commonly used to provide cathodic protection for weathering steel. However, the steel substrate corrodes faster than the Zinc coating because of the coating's negative corrosion potential. Many studies have examined Zinc and alloy coatings' resistance to corrosion. Hot-dip galvanizing, Electrodeposition, and Zinc-rich coat (ZRC) spray are just some of the methods that can be used to deposit such coatings. Commercially available 99.95 % pure Zinc oxide was used in the electroplating process in this investigation. Steel samples were plated in Zinc sulphate and Zinc oxide solutions and were controlled by different bath parameters such as voltage, current, pH, temperature, and coating time. The addition of hexagonal Boron Nitride (h-BN) nanoparticles has also shown significant improvements in corrosion resistance. However, Zinc-based coating techniques reinforced with h-BN incorporation show the best corrosion current density (Icorr) of Hot dip 2 % wt. (2.1 μA/cm2), ZRC 2.5 % wt., (4.4 μA/cm2), and electroplating 15.75 g/L (0.081 μA/cm2), which is an order of magnitude lower than coatings without h-BNs. The corrosion rates and current densities of Zn/h-BN coated layers were investigated in a controlled laboratory environment that mimicked natural conditions (Rainwater solution) by extrapolating polarization curves.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130872865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison Between Numerical and an Experimental Results of Pressure Drop in a Perforated Horizontal Wellbore with a 90° Perforations Phasing","authors":"M. Mustafa, Q. Rishack, M. Abdulwahid","doi":"10.33971/bjes.23.1.15","DOIUrl":"https://doi.org/10.33971/bjes.23.1.15","url":null,"abstract":"This paper presented experimental and numerical studies to investigate pressure drop in perforation horizontal wellbore with a 90° phasing and 20 spm perforation density. The experimental apparatus has been constructed to calculate the static pressure drop and calculate the exit velocity in the horizontal pipe after mixing the axial flow with the radial flow through the perforations in the wellbore. The specifications of the wellbore used were the inner diameter is 44 mm, length is 2 m, and perforation diameter is 4 mm. For this objective, a simulation model was created in the wellbore using the ANSYS Fluent simulation software by using the standard k-ε model and applied to the (CFD) by changing the axial flow from (40-160) lit/min and constant inflow through perforations from range (0 - 80) lit/min. According to the study's findings, the increase in the radial flow through the perforations increases the total flow rate ratio and the total pressure drop and vice versa. In addition, an increase in the axial flow mixed with radial flow increases the total pressure drop, friction factor, and a decrease in productivity index. Furthermore, the percentage error of the total pressure drop between the numerical and experimental results in test 4 is about 3.83 %. It was found that the numerical and experimental results represented a good agreement about the study of the flow-through perforations at 90° angle in terms of pressure drop and productivity index, etc.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"111 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115382376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving of the Subgrade Soil using Chemical Additives","authors":"Abbas A. Khudhair, H. Shaia, H. Aodah","doi":"10.33971/bjes.23.1.2","DOIUrl":"https://doi.org/10.33971/bjes.23.1.2","url":null,"abstract":"Chemical additives were used in this research to improve the properties of the road subgrade layer. Cement, lime, and ferric chloride were used. Laboratory tests such as unconfined compressive strength, consistency limits, and wheel truck test were conducted. The results showed that adding these chemicals to the soil increases the ability of the soil to work, its resistance, and its durability. The optimum percentage of chemical additives that is suitable for the addition to the soil of Al-Nasiriya city were 9 %, 10 %, and 2 % corresponding to cement, lime, and ferric chloride, respectively. According to the unconfined compressive strength test and with increase curing period, which gave good results in improving the strength of the soil. As for the consistency limits, all additives reduced the liquid limit and plasticity index and increased the plastic limit, according to the wheel track test, at 10,000 passes the Rutting depth was 32 mm for natural soil, also the depths were (14, 19, and 17 mm) with chemical additives, respectively.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"737 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132338383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strength Characteristics of Clay Soil Reinforced with Natural Fibers","authors":"M. Abood, R. R. Shakir","doi":"10.33971/bjes.23.1.6","DOIUrl":"https://doi.org/10.33971/bjes.23.1.6","url":null,"abstract":"The trend of using natural fibers in geotechnical engineering has become of great interest to improve weak soils due to some of its advantages such as local availability, environmental friendliness, and lower cost. In this study, a set of unconfined compression strength and direct shear tests were conducted to evaluate the performance of Al-Nasiriya clayey soil reinforced with natural fibers. Three different types of natural fibers were investigated as sustainable ones, including wheat straw fiber and palm frond fiber, as well as imperata cylindrica fiber. The effects of various fiber contents (0.25 %, 0.5 %, 0.75 %, and 1 %) and lengths (20 mm, 30 mm, and 40 mm) were experimentally evaluated. The results indicated that the compressive strength increased significantly with the increase of fiber content and length up to an optimum value and then decreased. The optimum fiber content and length were 0.5 % and 30 mm, respectively. Compared to the unreinforced soil, the compressive strength values at the optimum content and length increased by 102 %, 126 %, and 66 % for samples reinforced with wheat straw, palm fronds, and imperata cylindrica fibers, respectively. The shear properties improved due to soil reinforcement with natural fibers. Compared to the unreinforced soil, the internal friction angle of the samples reinforced with wheat straw, palm fronds, and imperata cylindrica fibers increased by 17.7 %, 42 %, and 9 %, respectively. Forever, the cohesion and shear strength are also improved due to inclusion of natural fibers.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128746778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental and Numerical Study the Linear Stress Analyses for the Prediction of Fracture Toughness of Ductile Material","authors":"Sara H. Khudair, Atheed Taha, A. Nassar","doi":"10.33971/bjes.23.1.14","DOIUrl":"https://doi.org/10.33971/bjes.23.1.14","url":null,"abstract":"The purpose of this paper is to determine a stress intensity factor experimental and numerically in the linear region by using a CT specimen of ductile material with a thickness of 15 mm, a width of 30 mm, and pre-crack 1.3 mm this dimension according to ASTM-E399-12 [1], by pulling the specimen in a 600 kN universal testing machine at a very slow speed rate of 0.5 mm/min. The load is applied until the fracture is accrued, the computer-controlled universal testing machine gives the value of the load and the displacement transducer gives a crack mouth opening displacement. The result showed experimental KI is equal to 75.412 MPa√m, and numerical KI is equal to74.576 MPa√m, this test showed a very slight decrease in FEA stress intensity factor compared to that in an experimental result which means the stress intensity factor, KI remains very close between experimental and numerical with an error percentage of about (1.12 %). The finite element analysis provides the best approximation to true fracture toughness values, and it can be used to acquire close parameters if experimental testing is not possible.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129657036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Experimental Study of Natural Convection Heat Transfer from a Horizontal and Slightly Inclined Plate-Fin Heat Sink","authors":"Almustafa Khalaf, H. Sultan, F. Abood","doi":"10.33971/bjes.23.1.13","DOIUrl":"https://doi.org/10.33971/bjes.23.1.13","url":null,"abstract":"The steady-state natural convection from heat sink fin arrays was studied on horizontal, vertical, and inclined heat sinks. Under natural convection, horizontal and vertical heat sinks with parallel fins were tested by considering radiation heat transfer. The experiments were conducted with power inputs ranging from 60 W to 455 W in order to obtain different temperatures. According to the result, when heat input increases, the heat transfer coefficient increases by 38 %, 40.78 % for horizontal and vertical respectively. For horizontal and vertical cases, new correlations have been presented to calculate the Nusselt number influenced by the Rayleigh number. For the incline case, the effect of buoyancy force was studied by changing the inclination angles at 0, 30, 45, and 60 degrees from vertical position. According to comparisons between vertical and incline cases, Nusselt number and heat transfer coefficient were most improved at 30 degrees by 6 %.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130256438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural Behavior of Reinforced Concrete Hollow Core Slabs Cast with Self-Compacting Concrete Containing Recycled Concrete as Coarse Aggregate","authors":"M. Hassan, Jamal Khudhair","doi":"10.33971/bjes.23.1.4","DOIUrl":"https://doi.org/10.33971/bjes.23.1.4","url":null,"abstract":"This paper investigates the possibility of recycled aggregate use in concrete slabs with hollow cores. The main variables considered in the experimental study for the slabs were the recycled aggregate percentage and the hollow core number. Six slabs with dimensions of (1000 × 500 × 120) mm was fabricated and tested. The results showed that the addition of recycled aggregate in the concrete slabs affected the ultimate strength, ductility, and energy absorption of the concrete members. An increase of the recycled aggregate percentage to 25 % decreased the ultimate strength capacity by 3.54 %, but the increase of recycled aggregate to 50 % led to a decrease in the ultimate strength of about 6.64%. The existence of a hollow core reduced the cracking and ultimate load capacity of the RCA slabs, and this reduction was according to the core number which the fabrication of more cores caused more decrement. The ductility and energy absorption were decreased when the replacement ratio of the recycled aggregate increased. Also, the core number affected the ductility and energy absorption. The energy absorption was the most property affected by the core number increase which caused an average reduction of 71.5 % when the core number increased from two to three hollow cores.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"127 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133990729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulation of Interaction Between Groundwater and Surface Water in Safwan-Zubair Area, South of Iraq","authors":"Maher Mnati, A. Al-Aboodi, Ayman A. Hassan","doi":"10.33971/bjes.23.1.7","DOIUrl":"https://doi.org/10.33971/bjes.23.1.7","url":null,"abstract":"Groundwater in arid and semi-arid regions, such as the studied area (Safwan Al-Zubair area, south of Iraq), is of specific meaning as a major source for domestic use and irrigation demand. There is a need to better understand the interactions between groundwater and surface water (Shatt Al-Basrah Canal). These interactions can negatively affect the quality of groundwater in this area, especially that the water of Shatt Al-Basrah Canal contains highly concentrated pollutants. The aim of the study is to investigate the temporal disparity of river-aquifer interactions and count the amount of river interchange among canal and aquifer. In this research, a new concept of paradigm will be advanced utilizing RIVER package of Groundwater River Paradigm (MODFLOW) for the simulation of river-aquifer interaction operations. Six monitoring wells are chosen to evaluate the preliminary and historical groundwater hydraulic heads for six months and then use all collected data in Modflow to execute the simulation of numerical modeling to assessment the interaction between surface water and groundwater. The amount of seepage out from the canal towards the aquifer was (64.99 m3/day) in wet season (winter season), as a result of the high levels of the surface water compared to the hydraulic heads of groundwater. The amount of seepage in dry season towards the aquifer is equal to (336.8 m3/day).","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124866544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Simulation of the Aerodynamic Characteristics of NACA0012 Airfoil Based on Operational Parameters","authors":"Ayat Mula, M. Abdulwahid","doi":"10.33971/bjes.23.1.11","DOIUrl":"https://doi.org/10.33971/bjes.23.1.11","url":null,"abstract":"This study investigated the performance of symmetric airfoils of type NACA0012 numerically under different operating conditions. It has been assumed that the study involves steady state, non-compressive, and turbulent flows. The operating fluid was air. The effect of Reynolds number and angle of attack on lift and drag coefficients, pressure distribution, and velocity distribution was investigated. ANSYS FLUENT has been used to solve the numerical model by using continuity equations, Navier-Stokes equations, and the appropriate K-ω SST perturbation model. This study shows a clear difference between the pressure coefficient of the lower and upper surfaces of the airfoil at high Reynolds numbers, indicating higher lift at high Reynolds numbers. As the maximum stall angle of the airfoil NACA0012 is 14° after which it decreases significantly, a direct relationship was observed between lift and drag coefficients and angle of attack.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127855959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}