Journal of capillary electrophoresis and microchip technology最新文献

筛选
英文 中文
Chiral separation of FITC-labeled amino acids with gel electrochromatography using a polydimethylsiloxane microfluidic device. 聚二甲基硅氧烷微流控装置凝胶电色谱法手性分离fitc标记氨基酸。
Hu-Lie Zeng, Haifang Li, Xu Wang, Jin-Ming Lin
{"title":"Chiral separation of FITC-labeled amino acids with gel electrochromatography using a polydimethylsiloxane microfluidic device.","authors":"Hu-Lie Zeng,&nbsp;Haifang Li,&nbsp;Xu Wang,&nbsp;Jin-Ming Lin","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>A chiral separation model of gel electrochromatography in a polydimethylsiloxane (PDMS) microfluidic device for amino acids (AAs) is presented. Six pairs of fluorescein isothiocyanate (FITC)-labeled dansyl amino acids (Dns-AAs) were separated in a 36-mm effectual separation channel in less than 120 sec, with resolutions all above 0.96. This highly efficient PDMS chiral microfluidic chip was prepared by inserting the mixture solution of monomers, crosslinkers, and radical initiation into the microchannel via syringe. Specifically, allyl-gamma-cyclodextrin (CD) as a chiral selector and crosslinker was bonded in gamma-CD-bonded polyacrylamide (PAA) gel, which was the separation media, and was immobilized in a PDMS microchannel through the stable linkage of 3-(trimethoxysilyl)-propyl methacrylate (Bind-Silane, Sigma, St. Louis, MO, U.S.A.). The preparation not only permitted the prompt chiral separation of AAs, but also extended application of the PDMS microfluidic device by restraining its hydrophobicity through the PAA gel monolithic column. Furthermore, the longevity of the PDMS microfluidic device was prolonged significantly. This can also be a powerful way to develop a rapid and efficient bioanalysis method and portable analytical apparatus.</p>","PeriodicalId":15060,"journal":{"name":"Journal of capillary electrophoresis and microchip technology","volume":"10 1-2","pages":"19-24"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26876992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of a thermo-associating matrix and a liquid polymer. 热缔合基质与液体聚合物的比较。
Nidhal Kahlaoui, Valessa Barbier, Marie-Alix Duval, Françoise Lefebvre, Jan Sudor, Rainer Siebert
{"title":"Comparison of a thermo-associating matrix and a liquid polymer.","authors":"Nidhal Kahlaoui,&nbsp;Valessa Barbier,&nbsp;Marie-Alix Duval,&nbsp;Françoise Lefebvre,&nbsp;Jan Sudor,&nbsp;Rainer Siebert","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Capillary electrophoresis is still widely used for DNA sequencing. The quality of the replaceable sieving matrix is a key area for massive sequencing with regard to speed and efficiency. The T25 polymer has been tested extensively and compared to poly(N,N-dimethylacrylamide) (PDMA). In terms of peak resolution, both polymers perform similarly. On the other hand, the run time is much shorter with the T25 polymer.</p>","PeriodicalId":15060,"journal":{"name":"Journal of capillary electrophoresis and microchip technology","volume":"10 1-2","pages":"41-2"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26876995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marja-Liisa Riekkola. Marja Liisa Riekkola。
Norberto A Guzman
{"title":"Marja-Liisa Riekkola.","authors":"Norberto A Guzman","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":15060,"journal":{"name":"Journal of capillary electrophoresis and microchip technology","volume":"10 1-2","pages":"1A-2A"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26877592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A sheath-flow electrochemical detector for capillary electrophoresis. 毛细管电泳用鞘流电化学检测器。
Junji Inoue, Takashi Kaneta, Totaro Imasaka
{"title":"A sheath-flow electrochemical detector for capillary electrophoresis.","authors":"Junji Inoue,&nbsp;Takashi Kaneta,&nbsp;Totaro Imasaka","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>In this study, a novel electrochemical detection system for capillary electrophoresis was proposed. In the proposed system, sheath flow would transport analytes to the working electrode surface to allow electrochemical detection. The sheath-flow electrochemical detector would require no modification of capillaries and could accommodate capillaries larger than 25 microm i.d.</p>","PeriodicalId":15060,"journal":{"name":"Journal of capillary electrophoresis and microchip technology","volume":"10 3-4","pages":"69-73"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"27227427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of voltage gradient partial-filling affinity capillary electrophoresis to estimate binding constants of ligands to receptors. 使用电压梯度部分填充亲和毛细管电泳估计配体与受体的结合常数。
Alejandra Ramirez, Frank A Gomez
{"title":"Use of voltage gradient partial-filling affinity capillary electrophoresis to estimate binding constants of ligands to receptors.","authors":"Alejandra Ramirez,&nbsp;Frank A Gomez","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Voltage gradient partial-filling affinity capillary electrophoresis (VGPFACE) is used to determine binding constants between carbonic anhydrase B (CAB, E.C.4.2.1.1) and arylsulfonamides, and vancomycin (Van) from Streptomyces orientalis and teicoplanin (Teic) from Actinoplanes teicomyceticus and D-Ala-D-Ala terminus peptides. Two variations of VGPFACE are described herein. In the first technique, the capillary is partially filled with ligand at increasing concentrations followed by a sample containing receptor and two noninteracting standards and electrophoresed in buffer using a voltage gradient that increases from 0 to 25 kV over the duration of the experiment. Upon continued electrophoresis, zones of solution overlap, and equilibrium is established between the ligand and receptor, causing a shift in the migration time of the receptor with respect to the noninteracting standards. This change in migration time is utilized for estimating a binding constant (K(b)). In the second technique, voltage gradient partial-filling multiple-injection ACE (VGPFMIACE), a multiple-injection sequence is used whereby the capillary is partially filled with ligand at increasing concentrations, a noninteracting standard, three or four separate plugs of receptor each separated by small plugs of buffer, and a plug containing a second noninteracting standard; this is then electrophoresed in buffer with a similar voltage gradient. Upon continued electrophoresis, a similar equilibrium is established and a value for K(b) is obtained for the interaction. The VGPFACE technique expands the functionality and potential of ACE as an analytical tool to examine various receptor-ligand interactions.</p>","PeriodicalId":15060,"journal":{"name":"Journal of capillary electrophoresis and microchip technology","volume":"10 3-4","pages":"43-50"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"27227423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separation of homo- and heteroduplexes of DNA fragments with different melting temperature by capillary electrophoresis at one single temperature. 毛细管电泳在同一温度下分离不同熔点DNA片段的同源和异源双链。
Ming Du, James H Flanagan, Yinfa Ma
{"title":"Separation of homo- and heteroduplexes of DNA fragments with different melting temperature by capillary electrophoresis at one single temperature.","authors":"Ming Du,&nbsp;James H Flanagan,&nbsp;Yinfa Ma","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Heteroduplex analysis is the most popular method for double-stranded DNA mutation detection thus far. Since different DNA fragments have various melting temperatures due to different base pair compositions and sizes, the PCR-amplified DNA fragments need to be denatured, generally, over 90 degrees C and reannealed to give a mixture of four duplexes, two homoduplexes, and two heteroduplexes for electrophoresis or chromatographic analysis. To separate homoduplex and heteroduplex DNA fragments, the column temperature must be controlled at the DNA melting temperature. This is tedious for DNA mutation study, since the melting point has to be measured before heteroduplex analysis. A novel heteroduplex analysis method using a capillary electrophoresis-laser-induced fluorescence (CE-LIF) detection system is described in this paper for the separation of all homo- and heteroduplex DNA fragments, which have different melting temperatures, at a single temdegrees C, 64 degrees C, and 70 degrees C--were separated and detected. The assay is simple, accurate, and sensitive, giving it potential for multiplex analysis for DNA mutation study.</p>","PeriodicalId":15060,"journal":{"name":"Journal of capillary electrophoresis and microchip technology","volume":"10 1-2","pages":"33-9"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26876994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commemorative issue: Part 1--Frans M. Everaerts (1941-2007). 纪念:第一部分——弗朗斯·m·埃弗拉茨(1941-2007)。
Norberto A Guzman
{"title":"Commemorative issue: Part 1--Frans M. Everaerts (1941-2007).","authors":"Norberto A Guzman","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":15060,"journal":{"name":"Journal of capillary electrophoresis and microchip technology","volume":"10 3-4","pages":"7A-8A"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"27227422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of active ingredients in mutouhui by capillary electrophoresis with electrochemical detection. 毛细管电泳-电化学检测法测定木头惠中有效成分。
Cheng-Huai Geng, Wei-Yu Wang, Miao Lin, Jian-Nong Ye
{"title":"Determination of active ingredients in mutouhui by capillary electrophoresis with electrochemical detection.","authors":"Cheng-Huai Geng,&nbsp;Wei-Yu Wang,&nbsp;Miao Lin,&nbsp;Jian-Nong Ye","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Capillary zone electrophoresis with electrochemical detection has been used for the separation and determination of scopoletin, hyperin, chlorogenic acid, and quercetin in Mutouhui. The effects of several important factors, including running buffer acidity, separation voltage, and working potential, were evaluated to achieve the optimum conditions. The working electrode was a 300-microm carbon disk electrode at a working potential of + 0.95 V (versus saturated calomel electrode). Under the optimum conditions, the analytes can be well separated within 20 min in a 75-cm-long fused-silica capillary. The current response was linear over two orders of magnitude with detection limits (S/N = 3) ranging from 2.70 x 10(-8) g/mL to 1.30 x 10(-7) g/mL for all analytes. This method was used successfully in the analysis of Mutouhui, and the assay results were satisfactory.</p>","PeriodicalId":15060,"journal":{"name":"Journal of capillary electrophoresis and microchip technology","volume":"10 3-4","pages":"63-7"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"27227425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and development of a flow injection-capillary electrophoresis analyzer employing fiber optic detection. 光纤检测流动注射-毛细管电泳分析仪的设计与研制。
Grady Hanrahan, Florence Tse, Froseen T Dahdouh, Keith Clarke, Frank A Gomez
{"title":"Design and development of a flow injection-capillary electrophoresis analyzer employing fiber optic detection.","authors":"Grady Hanrahan,&nbsp;Florence Tse,&nbsp;Froseen T Dahdouh,&nbsp;Keith Clarke,&nbsp;Frank A Gomez","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The development and experimental optimization of a novel flow injection-capillary electrophoresis (FI-CE) analyzer employing UV-visible fiber optic detection is described. The analyzer incorporates a miniature charge-coupled device (CCD) spectrometer and operates in a graphical programming environment. Data from experimental optimization studies and small molecule separations involving affinity capillary electrophoresis (ACE) and indirect detection of anions are presented. Future directions in terms of instrument automation and incorporation into a microfluidic format are also discussed.</p>","PeriodicalId":15060,"journal":{"name":"Journal of capillary electrophoresis and microchip technology","volume":"10 1-2","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26877595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of microchip-capillary electrophoresis and pulsed electrochemical detection to the analysis of biologically relevant phenolic compounds. 微芯片毛细管电泳和脉冲电化学检测在生物相关酚类化合物分析中的应用。
Maria F Mora, Yongsheng Ding, Eric Mejia, Carlos D García
{"title":"Application of microchip-capillary electrophoresis and pulsed electrochemical detection to the analysis of biologically relevant phenolic compounds.","authors":"Maria F Mora,&nbsp;Yongsheng Ding,&nbsp;Eric Mejia,&nbsp;Carlos D García","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>In this report, the most recent results regarding the use of microchip-capillary electrophoresis and pulsed electrochemical detection are reviewed. This article is particularly focused on the analysis of three groups of compounds: phenolic contaminants, phenolic acids, and phenolic antioxidants. Background information and a brief discussion covering other related analytical strategies are also included.</p>","PeriodicalId":15060,"journal":{"name":"Journal of capillary electrophoresis and microchip technology","volume":"10 1-2","pages":"7-18"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26877597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信