Chiral separation of FITC-labeled amino acids with gel electrochromatography using a polydimethylsiloxane microfluidic device.

Hu-Lie Zeng, Haifang Li, Xu Wang, Jin-Ming Lin
{"title":"Chiral separation of FITC-labeled amino acids with gel electrochromatography using a polydimethylsiloxane microfluidic device.","authors":"Hu-Lie Zeng,&nbsp;Haifang Li,&nbsp;Xu Wang,&nbsp;Jin-Ming Lin","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A chiral separation model of gel electrochromatography in a polydimethylsiloxane (PDMS) microfluidic device for amino acids (AAs) is presented. Six pairs of fluorescein isothiocyanate (FITC)-labeled dansyl amino acids (Dns-AAs) were separated in a 36-mm effectual separation channel in less than 120 sec, with resolutions all above 0.96. This highly efficient PDMS chiral microfluidic chip was prepared by inserting the mixture solution of monomers, crosslinkers, and radical initiation into the microchannel via syringe. Specifically, allyl-gamma-cyclodextrin (CD) as a chiral selector and crosslinker was bonded in gamma-CD-bonded polyacrylamide (PAA) gel, which was the separation media, and was immobilized in a PDMS microchannel through the stable linkage of 3-(trimethoxysilyl)-propyl methacrylate (Bind-Silane, Sigma, St. Louis, MO, U.S.A.). The preparation not only permitted the prompt chiral separation of AAs, but also extended application of the PDMS microfluidic device by restraining its hydrophobicity through the PAA gel monolithic column. Furthermore, the longevity of the PDMS microfluidic device was prolonged significantly. This can also be a powerful way to develop a rapid and efficient bioanalysis method and portable analytical apparatus.</p>","PeriodicalId":15060,"journal":{"name":"Journal of capillary electrophoresis and microchip technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of capillary electrophoresis and microchip technology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A chiral separation model of gel electrochromatography in a polydimethylsiloxane (PDMS) microfluidic device for amino acids (AAs) is presented. Six pairs of fluorescein isothiocyanate (FITC)-labeled dansyl amino acids (Dns-AAs) were separated in a 36-mm effectual separation channel in less than 120 sec, with resolutions all above 0.96. This highly efficient PDMS chiral microfluidic chip was prepared by inserting the mixture solution of monomers, crosslinkers, and radical initiation into the microchannel via syringe. Specifically, allyl-gamma-cyclodextrin (CD) as a chiral selector and crosslinker was bonded in gamma-CD-bonded polyacrylamide (PAA) gel, which was the separation media, and was immobilized in a PDMS microchannel through the stable linkage of 3-(trimethoxysilyl)-propyl methacrylate (Bind-Silane, Sigma, St. Louis, MO, U.S.A.). The preparation not only permitted the prompt chiral separation of AAs, but also extended application of the PDMS microfluidic device by restraining its hydrophobicity through the PAA gel monolithic column. Furthermore, the longevity of the PDMS microfluidic device was prolonged significantly. This can also be a powerful way to develop a rapid and efficient bioanalysis method and portable analytical apparatus.

聚二甲基硅氧烷微流控装置凝胶电色谱法手性分离fitc标记氨基酸。
建立了聚二甲基硅氧烷(PDMS)微流控装置中凝胶电色谱手性分离氨基酸(AAs)模型。6对荧光素异硫氰酸酯(FITC)标记的丹酰氨基酸(Dns-AAs)在36mm有效分离通道中分离不到120秒,分辨率均在0.96以上。将单体、交联剂和自由基引发的混合溶液通过注射器注入微通道,制备了高效的PDMS手性微流控芯片。具体来说,烯丙基- γ -环糊精(CD)作为手性选择剂和交联剂,以γ -CD键合的聚丙烯酰胺(PAA)凝胶为分离介质,通过3-(三甲氧基硅基)-甲基丙烯酸丙酯(binding - silane, Sigma, St. Louis, MO, U.S.A.)的稳定连接固定在PDMS微通道中。该制备不仅实现了原子酸的快速手性分离,而且通过PAA凝胶整体柱抑制了PDMS微流控装置的疏水性,扩大了PDMS微流控装置的应用范围。此外,PDMS微流控装置的使用寿命明显延长。这也为开发快速高效的生物分析方法和便携式分析仪器提供了有力的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信