{"title":"Analysis of the USD/JPY and EUR/JPY Exchange Rates Using Multifractal Analysis and Extreme Value Theory","authors":"Fumio Maruyama","doi":"10.4236/jamp.2023.1110184","DOIUrl":"https://doi.org/10.4236/jamp.2023.1110184","url":null,"abstract":"We performed a multifractal analysis using wavelet transform to detect the changes in the fractality of the USD/JPY and EUR/JPY exchange rates, and predicted their extreme values using extreme value theory. After the 1997 Asian financial crisis, the USD/JPY and EUR/JPY became multifractal, then the USD/JPY became monofractal and stable, and yen depreciation was observed. However, the EUR/JPY became multifractal and unstable, and a strong yen depreciation was observed. The coherence between the USD/JPY and EUR/JPY was strong between 1995 and 2000. After the 2007-2008 financial crisis, the USD/JPY became monofractal and stable, and yen appreciation was observed. However, the EUR/JPY became multifractal and unstable, and strong yen appreciation was observed. Various diagnostic plots for assessing the accuracy of the GP model fitted to USD/JPY and EUR/JPY are shown, and all the diagnostic plots support the fitted GP model. The shape parameters of USD/JPY and EUR/JPY were close to zero, therefore the USD/JPY and EUR/JPY did not have finite upper limits. We predicted the maximum return level for the return periods of 10, 20, 50, 100, 350, and 500 years and their respective 95% confidence intervals (CI). As a result, the 10-year and 100-year return levels for USD/JPY were estimated to be 149.6 and 164.8, with 95% CI [143.2, 156.0] and [149.4, 180.1], respectively.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136368031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automatic Driving Material Handling Vehicle Station Location and Scheduling Mathematical Modeling and Analysis","authors":"Qi Zhang, Qianzhen Zhang","doi":"10.4236/jamp.2023.119172","DOIUrl":"https://doi.org/10.4236/jamp.2023.119172","url":null,"abstract":"Traditional material handling vehicles often use internal combustion engines as their power source, which results in exhaust emissions that pollute the environment. In contrast, automated material handling vehicles have the advantages of zero emissions, low noise, and low vibration, thus avoiding exhaust pollution and providing a more comfortable working environment for operators. In order to achieve the goals of “peaking carbon emissions by 2030 and achieving carbon neutrality by 2060”, the use of environmentally friendly autonomous material handling vehicles for material transportation is an inevitable trend. To maximize the amount of transported materials, consider peak-to-valley electricity pricing, battery pack procurement, and the construction of charging and swapping stations while achieving “minimum daily transportation volume” and “lowest investment and operational cost over a 3-year settlement period” with the shortest overall travel distance for all material handling vehicles, this paper examines two different scenarios and establishes goal programming models. The appropriate locations for material handling vehicle swapping stations and vehicle battery pack scheduling schemes are then developed using the NSGA-II algorithm and ant colony optimization algorithm. The results show that, while ensuring a daily transportation volume of no less than 300 vehicles, the lowest investment and operational cost over a 3-year settlement period is approximately 24.1 million Yuan. The material handling vehicles follow the shortest path of 119.2653 km passing through the designated retrieval points and have two shortest routes. Furthermore, the advantages and disadvantages of the proposed models are analyzed, followed by an evaluation, deepening, and potential extension of the models. Finally, future research directions in this field are suggested.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135698945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deterministic and Stochastic Analysis of a New Rumor Propagation Model with Nonlinear Propagation Rate in Social Network","authors":"Chunxin Liu","doi":"10.4236/jamp.2023.1111219","DOIUrl":"https://doi.org/10.4236/jamp.2023.1111219","url":null,"abstract":"This paper presents a study on a new rumor propagation model with nonlinear propagation rate and secondary propagation rate. We divide the total population into three groups, the ignorant, the spreader and the aware. The nonlinear incidence rate describes the psychological impact of certain serious rumors on social groups when the number of individuals spreading rumors becomes larger. The main contributions of this work are the development of a new rumor propagation model and some results of deterministic and stochastic analysis of the rumor propagation model. The results show the influence of nonlinear propagation rate and stochastic fluctuation on the dynamic behavior of the rumor propagation model by using Lyapunov function method and stochastic related knowledge. Numerical examples and simulation results are given to illustrate the results obtained.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135712239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differential Calculus the Study of the Growth and Decay of an Entity’s Population","authors":"Lansana Toure, Mouctar Ndiaye","doi":"10.4236/jamp.2023.119173","DOIUrl":"https://doi.org/10.4236/jamp.2023.119173","url":null,"abstract":"Population Growth and Decay study of the growth or the decrease of a population of a given entity, is carried out according to the environment. In an infinite environment, i.e. when the resources are unlimited, a population P believes according to the following differential equation P’ = KP, with the application of the differential calculus we obtasin an exponential function of the variable time (t). The function of which we can predict approximately a population according to the signs of k and time (t). If k > 0, we speak of the Malthusian croissant. On the other hand, in a finite environment i.e. when resources are limited, the population cannot exceed a certain value. and it satisfies the logistic equation proposed by the economist Francois Verhulst: P’ = P(1-P).","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135749374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-Barycenter Mechanics, <i>N</i>-Body Problem and Rotation of Galaxies and Stars","authors":"Honglai Zhu","doi":"10.4236/jamp.2023.1110209","DOIUrl":"https://doi.org/10.4236/jamp.2023.1110209","url":null,"abstract":"In the present paper, the establishment of a systematic multi-barycenter mechanics is based on the multi-particle mechanics. The new theory perfects the basic theoretical system of classical mechanics, which finds the law of mutual interaction between particle groups, reveals the limitations of Newton’s third law, discovers the principle of the intrinsic relationship between gravity and tidal force, reasonably interprets the origin and change laws for the rotation angular momentum of galaxies and stars and so on. By applying new theory, the multi-body problem can be transformed into a special two-body problem and for which an approximate solution method is proposed, the motion law of each particle can be roughly obtained.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135263704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of the Modified Adomian Decomposition Method on a Mathematical Model of COVID-19","authors":"Justina Mulenga, Patrick Azere Phiri","doi":"10.4236/jamp.2023.119169","DOIUrl":"https://doi.org/10.4236/jamp.2023.119169","url":null,"abstract":"In this study, we constructed and analysed a mathematical model of COVID-19 in order to comprehend the transmission dynamics of the disease. The reproduction number (RC) was calculated via the next generation matrix method. We also used the Lyaponuv method to show the global stability of both the disease free and endemic equilibrium points. The results showed that the disease-free equilibrium point is globally asymptotically stable if RC RC > 1. We further used the Adomian decomposition method and the modified Adomian decomposition method to obtain the solutions of the model. Numerical analysis of the model was done using Sagemath 9.0 software.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135550057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of Melting Heat Transfer and Variable Characteristics on an MHD Non-Newtonian Shear-Thinning Fluid Flow with Gyrotactic Microorganisms over a Nonlinear Stretched Surface","authors":"Muhammad Ramzan, Naila Shaheen","doi":"10.4236/jamp.2023.118157","DOIUrl":"https://doi.org/10.4236/jamp.2023.118157","url":null,"abstract":"The objective of this work is to examine how temperature-dependent thermal conductivity and concentration-dependent molecular diffusion affect Reiner-Philippoff nanofluid flow past a nonlinear stretching sheet. At the interface of the elongated surface zero-mass flux and melting heat condition are incorporated. The formulated mathematical problem is simplified by implementing suitable similarity transformations. For the numerical solution bvp4c is utilized. The parameters emerging in the model are discussed versus allied profiles through graphical illustrations. It is perceived that the velocity of the fluid decays on incrementing the Bingham number. The gyrotactic microorganism profile declines on amplifying the Peclet number. The validation of the proposed model is also added to this study.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"111 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135056483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corresponding Prime Number Distribution Equation","authors":"Dan Liu, Chenglong Liu","doi":"10.4236/jamp.2023.1111214","DOIUrl":"https://doi.org/10.4236/jamp.2023.1111214","url":null,"abstract":"The conjecture of twin prime numbers is a mathematical problem. Proving the twin prime conjecture using traditional modern number theory is extremely profound and complex. We propose an elementary research method for corresponding prime number, proved that the conjecture of twin prime numbers and obtain the corresponding prime distribution equation. According to the distribution rate of corresponding prime numbers, the distribution pattern of twin prime numbers was proved the distribution rate theorem. This is the distribution rate of prime numbers corresponding to composite numbers, which approaches the distribution rate of prime numbers corresponding to integers. Based on the corresponding prime distribution equation, obtain the twin prime inequality function. Then, the formula for calculating twin prime numbers was discussed. There is also the Hardy Littlewood conjecture. This provides a practical and feasible approach for studying the distribution of twin prime numbers.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135506560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conservative Vector Fields and the Intersect Rule","authors":"Daniel A. Jaffa","doi":"10.4236/jamp.2023.1110190","DOIUrl":"https://doi.org/10.4236/jamp.2023.1110190","url":null,"abstract":"This paper covers the concept of a conservative vector field, and its application in vector physics and Newtonian mechanics. Conservative vector fields are defined as the gradient of a scalar-valued potential function. Gradient fields are irrotational, as in the curl in all conservative vector fields is zero, by Clairaut’s Theorem. Additionally, line integrals in conservative vector fields are path-independent, and line integrals over closed paths are always equal to zero, properties proved by the Gradient Theorem of multivariable calculus. Gradient fields represent conservative forces, and the associated potential function is analogous to potential energy associated with said conservative forces. The Intersect Rule provides a new, unique shortcut for determining if a vector field is conservative and deriving potential functions, by treating the indefinite integral as a set of infinitely many functions which satisfy the integral.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135053472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generalization of Inequalities in Metric Spaces with Applications","authors":"Eltigani I. Hassan","doi":"10.4236/jamp.2023.1110193","DOIUrl":"https://doi.org/10.4236/jamp.2023.1110193","url":null,"abstract":"In this paper, which serves as a continuation of earlier work, we generalize the idea of inequalities in metric spaces and use them to demonstrate that the incomplete metric space can be used to obtain a Banach space.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135060334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}