{"title":"微分学:研究一个实体人口的增长和衰退","authors":"Lansana Toure, Mouctar Ndiaye","doi":"10.4236/jamp.2023.119173","DOIUrl":null,"url":null,"abstract":"Population Growth and Decay study of the growth or the decrease of a population of a given entity, is carried out according to the environment. In an infinite environment, i.e. when the resources are unlimited, a population P believes according to the following differential equation P’ = KP, with the application of the differential calculus we obtasin an exponential function of the variable time (t). The function of which we can predict approximately a population according to the signs of k and time (t). If k > 0, we speak of the Malthusian croissant. On the other hand, in a finite environment i.e. when resources are limited, the population cannot exceed a certain value. and it satisfies the logistic equation proposed by the economist Francois Verhulst: P’ = P(1-P).","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential Calculus the Study of the Growth and Decay of an Entity’s Population\",\"authors\":\"Lansana Toure, Mouctar Ndiaye\",\"doi\":\"10.4236/jamp.2023.119173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Population Growth and Decay study of the growth or the decrease of a population of a given entity, is carried out according to the environment. In an infinite environment, i.e. when the resources are unlimited, a population P believes according to the following differential equation P’ = KP, with the application of the differential calculus we obtasin an exponential function of the variable time (t). The function of which we can predict approximately a population according to the signs of k and time (t). If k > 0, we speak of the Malthusian croissant. On the other hand, in a finite environment i.e. when resources are limited, the population cannot exceed a certain value. and it satisfies the logistic equation proposed by the economist Francois Verhulst: P’ = P(1-P).\",\"PeriodicalId\":15035,\"journal\":{\"name\":\"Journal of Applied Mathematics and Physics\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jamp.2023.119173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jamp.2023.119173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differential Calculus the Study of the Growth and Decay of an Entity’s Population
Population Growth and Decay study of the growth or the decrease of a population of a given entity, is carried out according to the environment. In an infinite environment, i.e. when the resources are unlimited, a population P believes according to the following differential equation P’ = KP, with the application of the differential calculus we obtasin an exponential function of the variable time (t). The function of which we can predict approximately a population according to the signs of k and time (t). If k > 0, we speak of the Malthusian croissant. On the other hand, in a finite environment i.e. when resources are limited, the population cannot exceed a certain value. and it satisfies the logistic equation proposed by the economist Francois Verhulst: P’ = P(1-P).