Differential Calculus the Study of the Growth and Decay of an Entity’s Population

Lansana Toure, Mouctar Ndiaye
{"title":"Differential Calculus the Study of the Growth and Decay of an Entity’s Population","authors":"Lansana Toure, Mouctar Ndiaye","doi":"10.4236/jamp.2023.119173","DOIUrl":null,"url":null,"abstract":"Population Growth and Decay study of the growth or the decrease of a population of a given entity, is carried out according to the environment. In an infinite environment, i.e. when the resources are unlimited, a population P believes according to the following differential equation P’ = KP, with the application of the differential calculus we obtasin an exponential function of the variable time (t). The function of which we can predict approximately a population according to the signs of k and time (t). If k > 0, we speak of the Malthusian croissant. On the other hand, in a finite environment i.e. when resources are limited, the population cannot exceed a certain value. and it satisfies the logistic equation proposed by the economist Francois Verhulst: P’ = P(1-P).","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jamp.2023.119173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Population Growth and Decay study of the growth or the decrease of a population of a given entity, is carried out according to the environment. In an infinite environment, i.e. when the resources are unlimited, a population P believes according to the following differential equation P’ = KP, with the application of the differential calculus we obtasin an exponential function of the variable time (t). The function of which we can predict approximately a population according to the signs of k and time (t). If k > 0, we speak of the Malthusian croissant. On the other hand, in a finite environment i.e. when resources are limited, the population cannot exceed a certain value. and it satisfies the logistic equation proposed by the economist Francois Verhulst: P’ = P(1-P).
微分学:研究一个实体人口的增长和衰退
人口增长与衰退研究一个给定实体的人口增长或减少,是根据环境进行的。在无限环境中,即当资源无限时,种群P相信根据微分方程P ' = KP,应用微分法得到变量时间(t)的指数函数,我们可以根据k和时间(t)的符号近似地预测种群。如果k > 0,我们就说马尔萨斯羊角面包。另一方面,在有限的环境中,即当资源有限时,人口不能超过一定的值。它满足经济学家Francois Verhulst提出的logistic方程:P ' = P(1-P)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信