{"title":"Coordination Chemistry and Reactivity of a Lewis Acidic Di‐Zinc Framework Supported by Bisphenoxymethanone Ligands","authors":"Ding-Hong Wu, Xin-Jie Lin, Wachara Benchaphanthawee, Yen-Hua Lee, Zih-Chen Lin, Han-Jung Li, Pei-Lin Chen, Ting-Shen Kuo, Chien-Lung Wang, Yen-Ku Wu, Chi-How Peng, Hsueh-Ju Liu","doi":"10.1002/cplu.202400382","DOIUrl":"https://doi.org/10.1002/cplu.202400382","url":null,"abstract":"We present the synthesis, structural characterization, and reactivity studies of a tetra‐zinc complex supported by the bisphenoxymethanone ligands and its transformation into various di‐zinc architectures. Our findings highlight the potential of these complexes in molecular recognition, supramolecular chemistry, and catalysis.","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"77 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cyclic Oxothiomolybdates: Building Blocks for Cyclodextrin-Based Open Frameworks.","authors":"Maxence Lion, Jérôme Marrot, William Shepard, Nathalie Leclerc, Mohamed Haouas, Emmanuel Cadot, Clément Falaise","doi":"10.1002/cplu.202400475","DOIUrl":"10.1002/cplu.202400475","url":null,"abstract":"<p><p>Desolvation processes, though common in self-assembled biological structures, are rarely evidenced and utilized in the design of crystalline architectures. In this study, we introduce a novel approach using the [Mo<sub>8</sub>S<sub>8</sub>O<sub>8</sub>(OH)<sub>8</sub>(guest)]<sup>2-</sup> complex, formed by the self-condensation of four [Mo<sup>V</sup> <sub>2</sub>O<sub>2</sub>S<sub>2</sub>]<sup>2-</sup> fragments around a guest unit (Mo<sup>VI</sup>O<sub>6</sub>H<sub>4</sub> or oxalate), as a chaotropic scaffold for crystallizing hybrid organic-inorganic systems with natural cyclodextrins. Our findings reveal that β-cyclodextrin (β-CD) facilitates the formation of host-guest complexes, while α-cyclodextrin (α-CD) induces the formation of a Kagome-type structure with significant voids. These new compounds were thoroughly characterized using X-ray diffraction (both powder and single-crystal), N<sub>2</sub> adsorption, elemental and thermogravimetric analysis. Additionally, solution studies using <sup>1</sup>H NMR titration and small-angle X-ray scattering (SAXS) demonstrated pre-association of the building units in solution. These results enhance our understanding of the design principles for supramolecular structures composed of inorganic polyanions and cyclodextrins.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400475"},"PeriodicalIF":3.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPlusChemPub Date : 2024-09-09DOI: 10.1002/cplu.202400400
Mahnaz Najafi, Jan Janczak
{"title":"Post‐Synthetic Modification of a 1D Mixed‐Linker Zn(II) Coordination Polymer for Acid‐Catalyzed Alcoholysis of Epoxides","authors":"Mahnaz Najafi, Jan Janczak","doi":"10.1002/cplu.202400400","DOIUrl":"https://doi.org/10.1002/cplu.202400400","url":null,"abstract":"Rational design of heterogeneous acid catalysts possessing uniform dispersion of active sites plays a significant role in the catalytic performance. In the present work, a coordination polymer, [Zn(4,4´‐bpy)(µ‐Hbtc)(H2O)]∙2H2O (Zn‐CP), was solvothermally synthesized using 4,4´‐bpy (= 4,4´‐bipyridine) and H3btc (= 1,3,5‐benzenetricarboxylic acid) mixed linkers. Single crystal X‐ray analysis of the polymer displayed that Zn‐CP chains were decorated with 4,4´‐bpy having unidentate coordination fashion. Then, the free N atom of the linker in Zn‐CP was functionalized by ‐SO3H groups to afford Zn‐CP‐SO3H with enhanced acidity. The structures were characterized by FT‐IR, thermogravimetric analysis, powder X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), temperature programmed desorption of NH3 (NH3‐TPD), and field emission scanning electron microscopy (FE‐SEM) analyses. The coordination polymer was employed as heterogeneous catalyst for alcoholysis of epoxides under room conditions. The Zn‐CP‐SO3H exhibited excellent catalytic activity and regioselectivity in the methanolysis of styrene oxide within short reaction time.","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"249 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient Photocatalytic Oxidative Coupling of Amines under Visible Light Using a Trioporphyrins-Based Covalent Triazine Framework.","authors":"Xiao-Hui Liu, Xiao-Xuan Guo, Shuo-Yun Zheng, Xian-Tai Zhou","doi":"10.1002/cplu.202400460","DOIUrl":"10.1002/cplu.202400460","url":null,"abstract":"<p><p>Porphyrins-based porous organic polymers (POP) were widely used in photocatalytic oxidation under visible light owing to their superiority in the activation of oxygen. In contrast, the efficiency is usually limited due to the fast recombination and slow electron transfer. Herein, we report the use of a trioporphyrins-based covalent triazine framework (Por-CTF) as visible-light-active photocatalyst for the coupling oxidative of amines to imines at room temperature. By incorporating the π-conjugated porphyrin building block led to the enhanced electron transport between molecules, and the extended recombination time of excited electrons. The photocatalytic efficiency of Por-CTF is superior to that of polymer in absence of triazine framework (POP-TSP), which was prepared by radical polymerization using tetra-(4-vinylphenyl) porphyrin (TSP) as monomer. Por-CTF catalyst presented excellent efficiency for various primary amines and stability. This work provides a reasonable guidance of catalyst molecular structure design for enhancing efficiency in the photocatalytic oxidation.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400460"},"PeriodicalIF":3.0,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPlusChemPub Date : 2024-09-06DOI: 10.1002/cplu.202400512
Lei Wang, Niclas Solin
{"title":"Valorization of Protein Materials Through Mechanochemistry and Self-Assembly.","authors":"Lei Wang, Niclas Solin","doi":"10.1002/cplu.202400512","DOIUrl":"10.1002/cplu.202400512","url":null,"abstract":"<p><p>The concept of combining mixing of solids by milling (a type of mechanochemistry) with aqueous self-assembly provides interesting possibilities for energy efficient production of advanced nanomaterials. Many proteins are outstanding building blocks for self-assembly, a prominent example being the conversion of proteins into protein nanofibrils (PNFs) - a structure related to amyloid fibrils. PNFs have attractive mechanical properties and have a tendency to form ordered materials. They are accordingly of interest as materials for bioplastics and potentially also for more high-tech applications. In this concept article we highlight our effort on valorization of such proteins with hydrophobic organic compounds such an organic dyes and drug molecules, by developing scalable methodology combining mechanochemistry and self-assembly. Compared to more established methodology, mechanochemical methodology is a valuable complement as it allows potential scalable production of hybrids between e. g. proteins and highly hydrophobic compounds - a class of hybrid material that is difficult to access by other means. This may allow for development of sustainable processes for fabrication of advanced protein-based materials derivable from renewable source materials.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400512"},"PeriodicalIF":3.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPlusChemPub Date : 2024-09-05DOI: 10.1002/cplu.202400404
Reinier Lemos, Yoana Pérez-Badell, Mauro De Nisco, Andrea Carpentieri, Margarita Suárez, Silvana Pedatella
{"title":"Organic Chimeras based on Selenosugars, Steroids, and Fullerenes as Potential Inhibitors of the β-amyloid Peptide Aggregation.","authors":"Reinier Lemos, Yoana Pérez-Badell, Mauro De Nisco, Andrea Carpentieri, Margarita Suárez, Silvana Pedatella","doi":"10.1002/cplu.202400404","DOIUrl":"10.1002/cplu.202400404","url":null,"abstract":"<p><p>The aggregation of β-amyloid peptide (Aβ) is associated with neurodegenerative diseases such as Alzheimer's disease (AD). Several therapies aimed at reducing the aggregation of this peptide have emerged as potential strategies for the treatment of AD. This paper describes the design and preparation of new hybrid molecules based on steroids, selenosugars, and [60]fullerene as potential inhibitors of Aβ oligomerization. These moieties were selected based on their antioxidant properties and possible areas of interaction with the Aβ. Cyclopropanations between C<sub>60</sub> and malonates bearing different steroid and selenosugar moieties using the Bingel-Hirsch protocol have enabled the synthesis of functionalized molecular hybrids. The obtained derivatives were characterized by physical and spectroscopic techniques. Theoretical calculations for all the selenium compounds were performed using the density functional theory DFT/B3LYP-D3(BJ)/6-311G(2d,p) predicting the most stable conformations of the synthesized derivatives. Relevant geometrical parameters were investigated to relate the stereochemical behavior and the spectroscopic data obtained. The affinity of the compounds for Aβ-peptide was estimated by molecular docking simulation, which predicted an increase in affinity and interactions for Aβ for the hybrids containing the C<sub>60</sub> core. In addition, parameters such as lipophilicity, polar surface area, and dipole moment were calculated to predict their potential interaction with membrane cells.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400404"},"PeriodicalIF":3.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPlusChemPub Date : 2024-09-05DOI: 10.1002/cplu.202400323
Akshaya Kana Veedu, Archana Panthalattu Parambil, Muraleedharan K Manheri
{"title":"Sequential Release of Ibuprofen and the Gasotransmitter Hydrogen sulfide using Oxanorbornane-Based Synthetic Lipids as Carriers.","authors":"Akshaya Kana Veedu, Archana Panthalattu Parambil, Muraleedharan K Manheri","doi":"10.1002/cplu.202400323","DOIUrl":"10.1002/cplu.202400323","url":null,"abstract":"<p><p>After understanding the biological signaling roles of hydrogen sulfide and its involvement in various physiological processes, there has been enormous interest in exploring its therapeutic utility in areas such as cancer, inflammation, cardiovascular diseases, etc. There is also growing interest in using suitable H<sub>2</sub>S donors in combination with other drugs to improve the treatment outcome through the modulation of multiple pathways. The premature release of H<sub>2</sub>S from small molecule donors and the difficulty in controlling its spatio-temporal distribution are the major challenges during these efforts. Hence the development of appropriate carriers that can release this gasotransmitter along with the therapeutic entity of interest in a controlled manner has high significance. In this regard, this report presents a novel drug delivery system from oxanorbornane-based synthetic lipids that carries a H<sub>2</sub>S-releasing 1,2-dithiole-3-thione moiety as part of the head group. Nanoaggregates of the resulting conjugate are not only capable of efficiently entrapping a non-steroidal anti-inflammatory drug such as ibuprofen, but also release this drug and H<sub>2</sub>S in a controlled and sequential manner.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400323"},"PeriodicalIF":3.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of Metal-Supported Nanostructured Zeolite Catalysts and their Applications in the Upgrading of Biomass-Derived Furans: Advances and Prospects","authors":"Peerapol Pornsetmetakul, Narasiri Maineawklang, Chularat Wattanakit","doi":"10.1002/cplu.202400343","DOIUrl":"10.1002/cplu.202400343","url":null,"abstract":"<p>The development of platform chemicals derived from biomass, in particular, 5-hydroxymethylfurfural (5-HMF) and furfural (FUR), is of crucial importance in biorefinery. Over the past decades, metal-supported nanostructured zeolites, in particular, metal-supported hierarchically porous zeolites or metal-encapsulated zeolites, have been extensively elaborated because of their multiple functionalities and superior properties, for example, shape-selectivity, (hydro)thermal stability, tunable acidity and basicity, redox properties, improved diffusion, and intimacy of multiple active sites. In this review, the effects of such properties of metal-supported nanostructured zeolites on the enhanced catalytic performances in furanic compound upgrading are discussed. In addition, the recent rational design of metal-supported nanostructured zeolites is exemplified. Consequently, the ongoing challenges for further developing metal-supported nanostructured zeolites-based catalysts and their applications in HMF and FUR upgrading are identified.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"89 11","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of Novel Hierarchical Catalysts by Simultaneous Generation of β-Zeolite and Mesoporous Silica for Catalytic Cracking.","authors":"Haruna Oshimura, Shuuma Tanaka, Shouya Nagata, Shinya Matsuura, Tadanori Hashimoto, Atsushi Ishihara","doi":"10.1002/cplu.202400447","DOIUrl":"10.1002/cplu.202400447","url":null,"abstract":"<p><p>The gel skeletal reinforcement (GSR) method was applied at the preparation stage of β-zeolite to prepare a novel hierarchical catalyst. A solution of hexamethyldisiloxane (HMDS) and acetic anhydride, a GSR reagent, was added to the mixture of colloidal silica, sodium aluminate, tetraethylammonium hydroxide, sodium hydroxide and water, and successive aging and hydrothermal treatment gave microporous β-zeolite surrounded by mesoporous silica like core-shell structure. Its properties were characterized by XRD, nitrogen adsorption and desorption, NH<sub>3</sub>-TPD, TEM, and TG-DTA measurements, and further characteristics of the catalysts produced were clarified by the catalytic cracking of n-dodecane. The hierarchical structure of microporous zeolite and mesoporous silica was shown from GSR-2.9HS-H-Beta to GSR-3.2HS-H-Beta, where the molar ratio of HMDS and silica source of β-zeolite was 2.9~3.2 : 100. It was found that in the catalytic cracking of n-dodecane, the relative activity (the conversion per the amount of zeolite crystals) increased with the increase in mesopore volume and surface area. The result indicated that the introduction of mesopores was effective even in catalytic cracking of small molecule of n-dodecane.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400447"},"PeriodicalIF":3.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPlusChemPub Date : 2024-09-04DOI: 10.1002/cplu.202400302
Yanyun He, Rui Wu, Yan Zhao, Weixu Feng, Chenyu Zhao, Hongxia Yan
{"title":"Recent Advances of Organic-Inorganic Hybrid Fluorescent Hyperbranched Polymer: Synthesis, Performance Regulation Strategies and Applications.","authors":"Yanyun He, Rui Wu, Yan Zhao, Weixu Feng, Chenyu Zhao, Hongxia Yan","doi":"10.1002/cplu.202400302","DOIUrl":"10.1002/cplu.202400302","url":null,"abstract":"<p><p>The organic-inorganic hybrid fluorescent hyperbranched polymer, including hyperbranched polysiloxane and hyperbranched polyborate, have attracted much attention due to their excellent optical properties and wide range of applications. Hyperbranched polysiloxane and polyborates, prepared by introducing Si or B elements into organic polymer chains at the molecular level through rational molecular design and novel synthesis methods, exhibit outstanding photophysical properties as an indispensable branch of organic-inorganic hybrid fluorescent materials. Herein, this review highlights the recent research progress on hyperbranched polysiloxanes and hyperbranched polyborates, including strategies for regulating their emission wavelengths, quantum yields, and fluorescence lifetimes, potential emission mechanisms, and various applications. Finally, some challenges and promising future directions in the field of organic-inorganic hybrid fluorescent polymers are summarized.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400302"},"PeriodicalIF":3.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}