{"title":"Marine Algae Bioadsorbents for Adsorptive Removal of Heavy Metals","authors":"M. Nazal","doi":"10.5772/INTECHOPEN.80850","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80850","url":null,"abstract":"With the shortage of freshwater resources and as wastewater output of huge industries as well as pollution that might be happening in the ecosystem, wastewater treatment is of utmost importance. Removal of pollutants such as heavy metals from wastewater would provide an exceptional alternative water resource. Extensive research has been done to develop an operative technology to overcome the toxicity and the negative environmental impact of heavy metals and their ionic forms. In this book chapter, biomass bioadsorbents utilizing marine algae for adsorptive removal of heavy metal pollutants from wastewater were discussed. The most common adsorption isotherms and kinetic models, which used to study their nature of adsorption, were also covered.","PeriodicalId":147738,"journal":{"name":"Advanced Sorption Process Applications","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133828544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sorption of Heavy Metals on Clay Minerals and Oxides: A Review","authors":"I. M. Ugwu, O. Igbokwe","doi":"10.5772/INTECHOPEN.80989","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80989","url":null,"abstract":"Sorption of heavy metals plays a vital role in controlling environmental pollution. Here, we reviewed the sorption of heavy metals such as Ni, Co, Cu, Zn, V, Pb, Hg, In, As, Cd, Cr, Ga, Cs, Mn, V, Eu, Mo, Th, TI and Cr on metal oxides and clay minerals. The mechanism of association between these ions and the host minerals, and the factors controlling their sorption are discussed in detail. Both chemical and empirical methods of describing sorption mechanism are discussed. The sorption processes depend on the pH, metal concentration, ionic strength, temperature, time, adsorbent dosage, type of ion, surface area, type of adsorbent modification and nature of adsorbent. The review confirmed that both metal oxides and clay have capability of sequestering heavy metals, however, combination of both metal oxides and modified clay have enhanced capability of removing heavy metals from aqueous solution. These inorganic adsorbents have the regeneration and recycling potentials and can be used to remediate and sequester economic metals for commercial purposes, however, this needs future investigation.","PeriodicalId":147738,"journal":{"name":"Advanced Sorption Process Applications","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129723657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sorption of Phosphorus from Fertilizer Mixture","authors":"A. Muwamba, K. Morgan, P. Nkedi-Kizza","doi":"10.5772/INTECHOPEN.80420","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80420","url":null,"abstract":"Studying phosphorus (P) sorption behavior is among the prerequisites for P management in the crop fields. The work presented in this chapter described P sorption data when fertilizer mixture (NH 4 NO 3 , KH 2 PO 4 , and KCl) was used to characterize sorption on soil. In addition to using fertilizer mixture, sorption experiments were also conducted using KH 2 PO 4 prepared in 0.01 M KCl, 0.005 M CaCl 2 , and deionized water. The 24-h batch sorption experiments were conducted using a sandy soil to solution ratio of 1:2, and the equilibrium solution and sorbed data were described using Freundlich isotherm. Sorption kinetics experiments were conducted using times, 4, 8, 12, and 24 h. The Freundlich isotherm constant and sorbed P kinetics data for 0.005 M CaCl 2 were significantly greater ( p < 0.05) than for 0.01 M KCl and/or fertilizer mixture. The Freundlich isotherm constant and sorbed P kinetics data for deionized water were significantly lower ( p < 0.05) than for 0.01 M KCl and/or fertilizer mixture. There was no significant difference in Freundlich isotherm constant and sorbed P kinetics data for 0.01 M KCl and fertilizer mixture. The sorption data showed the importance of using the fertilizer mix applied to the field when conducting sorption experiments.","PeriodicalId":147738,"journal":{"name":"Advanced Sorption Process Applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124975765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. W. Kajjumba, S. Emik, A. Ongen, H. Ozcan, S. Aydın
{"title":"Modelling of Adsorption Kinetic Processes—Errors, Theory and Application","authors":"G. W. Kajjumba, S. Emik, A. Ongen, H. Ozcan, S. Aydın","doi":"10.5772/INTECHOPEN.80495","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80495","url":null,"abstract":"Adsorption has become a competitive method in the field of wastewater and air treatment. Adsorption kinetics is one of the main factors that must be understood before the applicability of any adsorbent. In every adsorption process, linear or nonlinear analysis of the kinetics is applied. The goodness of fit index (coefficient of correlation or sum of squares) is applied to access the best model. The usage of linear or non-linear from of the adsorption kinetics has an impact on the distribution of error function. Almost in every adsorption study, linear forms have been used to conclude the best kinetic model that influence the adsorption mechanism— which might be an error. Therefore, this review highlights the mistakes in the usage of linear and non-linear models. The applicability of the adsorption kinetics in wastewater treatment is also illuminated.","PeriodicalId":147738,"journal":{"name":"Advanced Sorption Process Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130504392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Abdelmonem, Yujun Wang, J. Lützenkirchen, M. E. Alves
{"title":"Calcium Uptake on Kaolinite and Gibbsite: Effects of Sulfate, pH, and Salt Concentration with Additional Insight from Second Harmonic Generation on Temperature Dependencies with Sapphire-Basal Planes and the Potential Relevance to Ice Nucleation","authors":"A. Abdelmonem, Yujun Wang, J. Lützenkirchen, M. E. Alves","doi":"10.5772/INTECHOPEN.81273","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81273","url":null,"abstract":"Although previous studies have shown that sulfate can either increase cation leaching or enhance cation adsorption in soil, little is known about the factors behind these phenomena. To learn more about them, calcium adsorption experiments were carried out with kaolinite and gibbsite at initial pH values 4 and 6 and in the presence of 1 or 20 mmolc L−1 of either nitrate or sulfate. The results indicated that limited sulfate-calcium coadsorption occurred on gibbsite when it was in contact with the dilute solution of CaSO4.2H2O at pH ~ 7. Regarding mineral and pH values, calcium adsorption from the concentrated solutions decreased with sulfate possibly because of the presence of ~31% of the CaSO40 ion pair in the concentrated CaSO4.2H2O solutions and the low free calcium activity therein. Calcium adsorption on kaolinite and gibbsite from all concentrated solutions was reduced when the initial pH changed from 4 to 6 suggesting a negative salt effect on that process. In addition to indicating negligible participation of gibbsite in calcium adsorption, our findings also suggest that higher amounts of gypsum applied to lime-amended oxisols reduce the effectiveness of the main oxisol clay-sized mineral capable of adsorbing cations, i.e., kaolinite, to impair calcium leaching. The uptake data were complemented with some zeta-potential measurements, which supported the lack of substantial uptake of calcium even in the presence of sulfate. Some modeling calculations using the only available model covering sulfate and calcium on gibbsite have been done to rationalize the experimental data, but the model is only able to involve pure electrostatic attraction of calcium, which is not sufficient to produce substantial uptake. Finally, the aluminol basal plane that is present on both gibbsite and kaolinite has been additionally studied using second harmonic generation (SHG) down to 4°C, because the ion-pair formation decreases with decreasing temperature. The second harmonic results confirm the patterns observed in the electrokinetic measurements with kaolinite being quite comparable to the sapphire basal plane. Also and quite clearly, the presence of CaSO4 solutions caused temperature dependence different from pure CaCl2 and Na2SO4 solutions. The latter were essentially behaving like pure water. The difference between the calcium chloride and sulfate systems can be explained by sulfate interaction and might be linked to the temperature dependence of the formation of the CaSO4 ion pair. The temperature dependency study could be an important starting point for looking at ice nucleation in the presence of the three different solutions and more strongly link aqueous chemistry to ice nucleation processes.","PeriodicalId":147738,"journal":{"name":"Advanced Sorption Process Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132949680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. F. Mendes, A. F. D. Júnior, V. Takeshita, A. P. Rego, V. L. Tornisielo
{"title":"Effect of Biochar Amendments on the Sorption and Desorption Herbicides in Agricultural Soil","authors":"K. F. Mendes, A. F. D. Júnior, V. Takeshita, A. P. Rego, V. L. Tornisielo","doi":"10.5772/INTECHOPEN.80862","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80862","url":null,"abstract":"Improved understanding of herbicide destinations, effects, and environmental risks through worldwide studies is crucial to minimizing impacts to nontarget organisms, especially in tropical regions rich in biodiversity. In recent years, there has been widespread international concern about the toxic effects of herbicides on humans, faunas, and native floras. Therefore, the adoption of agricultural practices that minimize the environmental effects of herbicides has been frequently studied, for example, the addition of biochar in agricultural soils. Biochar can be defined as the by-product of a thermal process conducted under low oxygen or oxygen-free conditions (pyrolysis) to convert plant biomass to biofuels, where biochar is the solid product of pyrolysis. The addition of biochar to the soil can easily potentiate the herbicide retention process, which, in addition to contributing positively to the reduction of chemical contaminants in the environment, may exert negative effects on herbicide behavior and the efficacy of these products on weed control. Thus, this chapter will present the general characteristics of biochar, as well as the impact of this material on sorption-desorption of herbicides in the soil.","PeriodicalId":147738,"journal":{"name":"Advanced Sorption Process Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126474043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lizethly Caceres Jensen, Jorge Rodriguez Becerra, M. Escudey
{"title":"Impact of Physical/Chemical Properties of Volcanic Ash-Derived Soils on Mechanisms Involved during Sorption of Ionisable and Non-Ionisable Herbicides","authors":"Lizethly Caceres Jensen, Jorge Rodriguez Becerra, M. Escudey","doi":"10.5772/INTECHOPEN.81155","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81155","url":null,"abstract":"Volcanic ash-derived soils (VADSs) are of great importance in the agricultural economy of several emerging and developing countries. The surface-charge amphoteric characteristics will confer physical/chemical properties absolutely different to constant-charge soils. This surface reactivity will confer to them a particular behaviour in relation to the herbicide sorption, representing an environmental substrate that may become polluted over time due to intensive agronomic uses. Sorption is a key parameter to evaluate the fate and behaviour of herbicides in volcanic soils. Sorption type and kinetic sorption models are also necessary in order to develop and validate QSAR models to predict pesticide sorption on volcanic soils to prevent potential contamination of water resources. The use of solute sorption mechanism models and QSAR models for pesticide sorption in soils has contributed to a better understanding of the behaviour of pesticides on volcanic soils. This chapter is divided into five sections: Physical/chemical properties of volcanic ash-derived soils; Ionisable and non-ionisable herbicides’ fate and behaviour in soil; Kinetic sorption: mechanisms involved during sorption of ionisable and non-ionisable herbicides on VADS; Sorption of ionisable and non-ionisable herbicides on VADS; and Physical/chemical properties in QSAR models: a mechanistic interpretation.","PeriodicalId":147738,"journal":{"name":"Advanced Sorption Process Applications","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132552452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adsorption of Heavy Metals on Layered Double Hydroxides (LDHs) Intercalated with Chelating Agents","authors":"N. Kano, Shuang Zhang","doi":"10.5772/INTECHOPEN.80865","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80865","url":null,"abstract":"Layered double hydroxides (LDHs) are lamellar ionic compounds containing a positively charged layer and exchangeable anions in the interlayer. In this study, LDHs intercalated with chelating agents were synthesized by anion exchange reaction. The materials synthesized in this work were characterized by chemical analysis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and powder X-ray diffraction (XRD) to confirm their properties. Adsorption experiments from aqueous solutions containing known amounts of some heavy metallic ions onto the adsorbent were explored in a batch system. The amount of metallic ions adsorbed by LDHs intercalated with EDTA and precursor LDHs were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and atomic absorption spectrometry (AAS). In order to examine the adsorption capacity of LDHs intercalated with chelating agents, the adsorption experiment was investigated under the optimum condition. The data were applied to Langmuir and Freundlich isotherm models. The pseudo-second-order kinetic model was more adequate to describe the kinetic in this case. LDHs intercalated with chelating agents synthesized in this work can be promising adsorbents for heavy metals. It is very significant information from the viewpoint of environmental protection.","PeriodicalId":147738,"journal":{"name":"Advanced Sorption Process Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129584073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. L. Colpani, Adrieli T.O. Dal’Toé, M. Zanetti, R. Zeferino, L. L. Silva, J. Mello, M. Fiori
{"title":"Photocatalytic Adsorbents Nanoparticles","authors":"G. L. Colpani, Adrieli T.O. Dal’Toé, M. Zanetti, R. Zeferino, L. L. Silva, J. Mello, M. Fiori","doi":"10.5772/INTECHOPEN.79954","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.79954","url":null,"abstract":"Photocatalysis and high adsorption coupling in a same nanoparticle have been emerged as a prominent class of cost-effective materials to degrade recalcitrant contaminants in wastewater. α-Hematite, metal-organic frameworks and TiO2 nanocomposites have been investigated due to their features that overcome the other conventional photocatalysts and adsorbents to remove contaminants in aqueous medium. Several methods are applied to synthesize these nanostructures with different properties and physicochemical features and a brief review is shown to these well-established techniques to provide an understanding for the construction and application of these advanced materials.","PeriodicalId":147738,"journal":{"name":"Advanced Sorption Process Applications","volume":"208 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121717765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biopolymer-Based Materials from Polysaccharides: Properties, Processing, Characterization and Sorption Applications","authors":"R. Dassanayake, Sanjit Acharya, N. Abidi","doi":"10.5772/INTECHOPEN.80898","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80898","url":null,"abstract":"Biopolymers are polymeric materials derived from biological sources. Due to their renewability, abundance, biodegradability and other unique properties such as high adsorption capabilities and ease of functionalization they have been investigated for several industrial applications including sorption. Polysaccharides especially cellulose, chitin and chitosan are important biopolymers because of their high abundance, wide distribution and low cost of production. This chapter provides an overview of properties, common processing methods, and material characterization of three commonly studied biopolymers namely cellulose, chitin and chitosan. It provides a thorough review on recent developments on utilization of cellulose, chitin, and chitosan-based materials for various sorption applications. Specifically, their application and efficiency in organic dye removal, heavy metals removal, oil and solvent spillage cleanup, and CO 2 adsorption are presented and discussed.","PeriodicalId":147738,"journal":{"name":"Advanced Sorption Process Applications","volume":"95 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123509938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}