Lizethly Caceres Jensen, Jorge Rodriguez Becerra, M. Escudey
{"title":"火山灰土壤理化性质对可电离和不可电离除草剂吸附机理的影响","authors":"Lizethly Caceres Jensen, Jorge Rodriguez Becerra, M. Escudey","doi":"10.5772/INTECHOPEN.81155","DOIUrl":null,"url":null,"abstract":"Volcanic ash-derived soils (VADSs) are of great importance in the agricultural economy of several emerging and developing countries. The surface-charge amphoteric characteristics will confer physical/chemical properties absolutely different to constant-charge soils. This surface reactivity will confer to them a particular behaviour in relation to the herbicide sorption, representing an environmental substrate that may become polluted over time due to intensive agronomic uses. Sorption is a key parameter to evaluate the fate and behaviour of herbicides in volcanic soils. Sorption type and kinetic sorption models are also necessary in order to develop and validate QSAR models to predict pesticide sorption on volcanic soils to prevent potential contamination of water resources. The use of solute sorption mechanism models and QSAR models for pesticide sorption in soils has contributed to a better understanding of the behaviour of pesticides on volcanic soils. This chapter is divided into five sections: Physical/chemical properties of volcanic ash-derived soils; Ionisable and non-ionisable herbicides’ fate and behaviour in soil; Kinetic sorption: mechanisms involved during sorption of ionisable and non-ionisable herbicides on VADS; Sorption of ionisable and non-ionisable herbicides on VADS; and Physical/chemical properties in QSAR models: a mechanistic interpretation.","PeriodicalId":147738,"journal":{"name":"Advanced Sorption Process Applications","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Impact of Physical/Chemical Properties of Volcanic Ash-Derived Soils on Mechanisms Involved during Sorption of Ionisable and Non-Ionisable Herbicides\",\"authors\":\"Lizethly Caceres Jensen, Jorge Rodriguez Becerra, M. Escudey\",\"doi\":\"10.5772/INTECHOPEN.81155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Volcanic ash-derived soils (VADSs) are of great importance in the agricultural economy of several emerging and developing countries. The surface-charge amphoteric characteristics will confer physical/chemical properties absolutely different to constant-charge soils. This surface reactivity will confer to them a particular behaviour in relation to the herbicide sorption, representing an environmental substrate that may become polluted over time due to intensive agronomic uses. Sorption is a key parameter to evaluate the fate and behaviour of herbicides in volcanic soils. Sorption type and kinetic sorption models are also necessary in order to develop and validate QSAR models to predict pesticide sorption on volcanic soils to prevent potential contamination of water resources. The use of solute sorption mechanism models and QSAR models for pesticide sorption in soils has contributed to a better understanding of the behaviour of pesticides on volcanic soils. This chapter is divided into five sections: Physical/chemical properties of volcanic ash-derived soils; Ionisable and non-ionisable herbicides’ fate and behaviour in soil; Kinetic sorption: mechanisms involved during sorption of ionisable and non-ionisable herbicides on VADS; Sorption of ionisable and non-ionisable herbicides on VADS; and Physical/chemical properties in QSAR models: a mechanistic interpretation.\",\"PeriodicalId\":147738,\"journal\":{\"name\":\"Advanced Sorption Process Applications\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sorption Process Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.81155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sorption Process Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.81155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of Physical/Chemical Properties of Volcanic Ash-Derived Soils on Mechanisms Involved during Sorption of Ionisable and Non-Ionisable Herbicides
Volcanic ash-derived soils (VADSs) are of great importance in the agricultural economy of several emerging and developing countries. The surface-charge amphoteric characteristics will confer physical/chemical properties absolutely different to constant-charge soils. This surface reactivity will confer to them a particular behaviour in relation to the herbicide sorption, representing an environmental substrate that may become polluted over time due to intensive agronomic uses. Sorption is a key parameter to evaluate the fate and behaviour of herbicides in volcanic soils. Sorption type and kinetic sorption models are also necessary in order to develop and validate QSAR models to predict pesticide sorption on volcanic soils to prevent potential contamination of water resources. The use of solute sorption mechanism models and QSAR models for pesticide sorption in soils has contributed to a better understanding of the behaviour of pesticides on volcanic soils. This chapter is divided into five sections: Physical/chemical properties of volcanic ash-derived soils; Ionisable and non-ionisable herbicides’ fate and behaviour in soil; Kinetic sorption: mechanisms involved during sorption of ionisable and non-ionisable herbicides on VADS; Sorption of ionisable and non-ionisable herbicides on VADS; and Physical/chemical properties in QSAR models: a mechanistic interpretation.