K. F. Mendes, A. F. D. Júnior, V. Takeshita, A. P. Rego, V. L. Tornisielo
{"title":"Effect of Biochar Amendments on the Sorption and Desorption Herbicides in Agricultural Soil","authors":"K. F. Mendes, A. F. D. Júnior, V. Takeshita, A. P. Rego, V. L. Tornisielo","doi":"10.5772/INTECHOPEN.80862","DOIUrl":null,"url":null,"abstract":"Improved understanding of herbicide destinations, effects, and environmental risks through worldwide studies is crucial to minimizing impacts to nontarget organisms, especially in tropical regions rich in biodiversity. In recent years, there has been widespread international concern about the toxic effects of herbicides on humans, faunas, and native floras. Therefore, the adoption of agricultural practices that minimize the environmental effects of herbicides has been frequently studied, for example, the addition of biochar in agricultural soils. Biochar can be defined as the by-product of a thermal process conducted under low oxygen or oxygen-free conditions (pyrolysis) to convert plant biomass to biofuels, where biochar is the solid product of pyrolysis. The addition of biochar to the soil can easily potentiate the herbicide retention process, which, in addition to contributing positively to the reduction of chemical contaminants in the environment, may exert negative effects on herbicide behavior and the efficacy of these products on weed control. Thus, this chapter will present the general characteristics of biochar, as well as the impact of this material on sorption-desorption of herbicides in the soil.","PeriodicalId":147738,"journal":{"name":"Advanced Sorption Process Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sorption Process Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Improved understanding of herbicide destinations, effects, and environmental risks through worldwide studies is crucial to minimizing impacts to nontarget organisms, especially in tropical regions rich in biodiversity. In recent years, there has been widespread international concern about the toxic effects of herbicides on humans, faunas, and native floras. Therefore, the adoption of agricultural practices that minimize the environmental effects of herbicides has been frequently studied, for example, the addition of biochar in agricultural soils. Biochar can be defined as the by-product of a thermal process conducted under low oxygen or oxygen-free conditions (pyrolysis) to convert plant biomass to biofuels, where biochar is the solid product of pyrolysis. The addition of biochar to the soil can easily potentiate the herbicide retention process, which, in addition to contributing positively to the reduction of chemical contaminants in the environment, may exert negative effects on herbicide behavior and the efficacy of these products on weed control. Thus, this chapter will present the general characteristics of biochar, as well as the impact of this material on sorption-desorption of herbicides in the soil.