{"title":"Flocking generators: A PdE framework for stability of smart grids with communications","authors":"Husheng Li, S. Djouadi, K. Tomsovic","doi":"10.1109/SmartGridComm.2012.6486041","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2012.6486041","url":null,"abstract":"Power system stability, with the aid of communication infrastructure, is studied using the frameworks of flocking and partial difference equation (PdE). The system dynamics are described using PdE, which reflects the power network topology. Cases of communications with negligible or non-negligible delays are both considered. Conditions of system stability are derived, based on which an algorithm for designing the communication network is proposed. The conclusions are demonstrated using numerical simulations.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129798206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yifan Li, Ran Wang, Ping Wang, D. Niyato, W. Saad, Zhu Han
{"title":"Resilient PHEV charging policies under price information attacks","authors":"Yifan Li, Ran Wang, Ping Wang, D. Niyato, W. Saad, Zhu Han","doi":"10.1109/SmartGridComm.2012.6486015","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2012.6486015","url":null,"abstract":"Enabling a bidirectional energy flow between power grids and plug-in hybrid electric vehicles (PHEVs) using vehicle-to-grid (V2G) and grid-to-vehicle (G2V) communications is considered as one of the key components of the future smart grid. On the one hand, the PHEV owner needs to charge its PHEV through the grid, given possibly time-varying electricity pricing schemes. On the other hand, the energy stored in a PHEV can also be sold back to the grid so as to act as an ancillary service while possibly generating revenues to its owner. Consequently, this motivates the need to develop smart charging policies that enable the PHEV owner to optimally decide on when to charge or discharge its vehicle, while minimizing its long-term energy consumption cost. In this paper, we model this PHEV energy management problem as a Markov decision process (MDP), which is solved by using a linear programming (LP) technique so as to obtain the optimal charging policy. In particular, we devise optimal charging policies that are resilient to the price information attacks such as denial of service (DoS) attacks and price manipulation attacks over the grid's communication network. We show that, under potential price information attacks, each PHEV can optimize its charging policies given only an estimated price information, which leads to a discrepancy between the real and expected costs. To this end, we analyze this cost difference using the proposed MDP model, which can also guide the system designer and administrator to decide whether reinforcing the system's security is required. The simulation results show that the proposed PHEV charging policy is effective and is adaptable to different PHEV mobility patterns, battery levels and varying electricity prices. It is also demonstrated that improving the system's ability to detect and resolve the attack can obviously reduce the impact brought by the attacks.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126987427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Price and output control in a community power network with renewable generations","authors":"Jiazhen Zhou, R. Hu, Xuping Zhang, Y. Qian","doi":"10.1109/SmartGridComm.2012.6486047","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2012.6486047","url":null,"abstract":"With the increasing popularity of the renewable generation sources these days, we are facing the great challenges on how to integrate them into a community distribution network smoothly. The variability of renewable generation makes it difficult to maintain the voltage stability. As a widely accepted solution that requires the least change on the substation controllers, the output of a renewable generator needs to be controlled so that no power is injected from a distribution network substation into a transmission network. In this paper, we design a control policy that regulates the power output from the renewable generators. We further leverage the price control to discourage non-collaborative behaviors so that this policy can not only guarantee the stability of the distribution network, but also ensure the fairness of generators in case of non-collaborations. Through simulations we demonstrate that this policy enables us to integrate renewable generations to achieve their benefits while limiting their disadvantages.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":"266 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134209953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Malicious ramp-induced temporal data attack in power market with look-ahead dispatch","authors":"Dae-Hyun Choi, Le Xie","doi":"10.1109/SmartGridComm.2012.6486005","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2012.6486005","url":null,"abstract":"We present a new class of cyber attack on state estimation, which may lead to financial arbitrage in power markets with time-coupled look-ahead dispatch models. It is shown that in look-ahead dispatch, attackers can manipulate the limits of ramp constraints of generators, withhold their generation capacity, and consequently make a profit. The feasibility and economic impact of such cyber attacks on real-time electricity market operations are illustrated in the IEEE 14-bus system.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131597303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wide area PMU communication over a WiMAX network in the smart grid","authors":"Reduan H. Khan, J. Khan","doi":"10.1109/SmartGridComm.2012.6485981","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2012.6485981","url":null,"abstract":"One of the key building blocks of the future smart grid is a wide area monitoring and control (WAMC) system that continuously monitors the health of the grid using the phasor measurement units (PMUs). Measurements from the PMUs are strictly delay-sensitive since they act as the triggering points for the underlying protection and control systems. This paper presents a detailed performance analysis of a wide area PMU communications system over a WiMAX/IEEE 802.16 network in the smart grid. It defines the basic application models and traffic requirements of a PMU communications system and maps them over the unsolicited grant service (UGS), real-time polling service (rtPS) and best-effort (BE) scheduling services of the IEEE 802.16 standard. Using a discrete event simulation model based on the OPNET simulation package, the paper evaluates the performance of these scheduling services in terms of delay, uplink data usage and signaling overheads. The results indicate that while the UGS performs best among the scheduling services, it consumes a significant amount of radio resources to achieve a tighter delay bound.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114165915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Robust distributed energy management for microgrids with renewables","authors":"Yu Zhang, Nikolaos Gatsis, G. Giannakis","doi":"10.1109/SmartGridComm.2012.6486036","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2012.6486036","url":null,"abstract":"Due to the low communication overhead and robustness to failures, distributed energy management is of paramount importance in smart grids, especially in microgrids, which feature distributed generation (DG). Distributed economic dispatch for a microgrid with renewable penetration and demand-side management operating in the grid-connected mode is considered in this paper. To address the challenge of intrinsically stochastic availability of renewable energy sources (RES), a novel power scheduling approach involving the actual renewable energy as well as the energy traded with the main grid is introduced, effecting the supply-demand balance. Its optimality amounts to minimizing the microgrid net cost, which includes conventional DG cost as well as worst-case transaction cost stemming from the uncertainty in RES. Leveraging the dual decomposition, the optimization problem formulated is solved in a distributed fashion. Numerical results are reported to corroborate the effectiveness of the novel approach.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114470260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SCORE: Smart-Grid common open research emulator","authors":"Song Tan, Wenzhan Song, Qifen Dong, L. Tong","doi":"10.1109/SmartGridComm.2012.6485997","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2012.6485997","url":null,"abstract":"A Smart Grid is a digitally enabled electrical grid that equips with various embedded devices that can sense, communicate, compute and control. Validating, analyzing and evaluating new ideas and technologies in Smart Grid require the modeling and emulating of both communication network and power network, as well as the interactions between them. This paper presents the design, implementation and evaluation of Smart-Grid Common Open Research Emulator (SCORE), the first integrated Smart Grid emulator of both power and communication network. Comparing to the existing works of co-simulation of Smart Grid, SCORE (as an emulator) will significantly reduce the development and test time of new ideas, since the same application program running in SCORE can be easily ported to embedded devices with little or no modification. SCORE supports large-scale emulations since it can be run across multiple network connected computers.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128506250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Demand response through a temperature setpoint market in Ontario","authors":"Sahil Singla, S. Keshav","doi":"10.1109/SmartGridComm.2012.6485967","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2012.6485967","url":null,"abstract":"The electrical grid is designed to meet peak loads, which may occur for only a few hours each year. Consequently, there are significant economic gains from a reduction in the peak load. Air conditioner (AC) load from residential buildings forms a significant portion of peak summer loads. The existing `peaksaver' program in Ontario attempts to reduce AC loads by setting thermostats a few degrees higher in volunteer households on hot summer days. This has had only a limited success. To address this issue, we propose a scheme that provides monetary incentive for participation. We describe the operation of this `temperature market' and demonstrate its effectiveness with a heterogeneous population of potential participants. We find that even a payment of $2 per hour of setback can reduce grid operating costs by $688 million over a period of 20 years.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127561175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PeHEMS: Privacy enabled HEMS and load balancing prototype","authors":"G. Kalogridis, Saraansh Dave","doi":"10.1109/SmartGridComm.2012.6486032","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2012.6486032","url":null,"abstract":"Smart grid efficient load balancing and the need for privacy are, in principle, contradictory. While richer information obtained from frequent energy readings help improve both the prediction and the control of the demand, and, effectively, improve the efficiency of the energy equilibrium production problem, it also gives rise to consumer privacy concerns. This is possible by analysing energy signatures to detect appliance usage and home living patterns of behaviour, which in effect cascades to a range of privacy invasion risks. This paper argues that the objective of energy efficiency might not necessarily be contradictory to protecting user privacy. In particular, we introduce a new notion of smart meter privacy which we call reconciled privacy and we connect it with a simple energy management algorithm that caps the energy a home may consume in 30 minute intervals by using a rechargeable battery system. System benchmarking is underpinned by formulating a methodology to assess a) utility cost savings, b) wholesale energy savings, and c) privacy protection. Our results suggest that the proposed algorithm will protect customer privacy and will improve energy production efficiency as compared with other energy management schemes. This is due to the algorithm's principle of promoting a universal consumption pattern that is close to its average, which in retrospect allows individual usage differences to be absorbed. To support this work, we use data from trials in Bristol city, which forms part of the 3eHouses EU FP7 project, and we present a prototype implementation showcasing the visualisation of privacy and energy control.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":"09 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127458701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Balakrishnan Narayanaswamy, Vikas K. Garg, T. S. Jayram
{"title":"Prediction based storage management in the smart grid","authors":"Balakrishnan Narayanaswamy, Vikas K. Garg, T. S. Jayram","doi":"10.1109/SmartGridComm.2012.6486034","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2012.6486034","url":null,"abstract":"Economic and environmental concerns have fostered interest in incorporating greater amounts of electricity from renewable energy sources into the grid. Unfortunately, the intermittent availability of renewable power has raised a barrier to the inclusion of these sources. Distributed storage is perceived as a means to extract value from the different resources. However, the large cost of storage requires the design of algorithms that can manage intermittent resources with minimum storage size. At the same time, advances in metering, communication, and weather prediction allow real time management of energy generation, distribution and consumption based on predictions of the future. In this paper, we focus on online algorithms for local storage management that use short term predictions of intermittent renewable resource availability. In contrast to prior work, we develop algorithms that come with theoretical bounds on performance even when demand, prices and availability are arbitrary (possibly non-stochastic), and the utility functions non-concave. Our fundamental contribution is to prove how appropriate discounting of future welfare leads to storage management algorithms that exhibit excellent practical performance even in the worst-case scenario. We substantiate these theoretical guarantees with experiments that demonstrate the effectiveness of our algorithms and the value of storage in the smart grid.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127221015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}