{"title":"可再生发电社区电网的价格与输出控制","authors":"Jiazhen Zhou, R. Hu, Xuping Zhang, Y. Qian","doi":"10.1109/SmartGridComm.2012.6486047","DOIUrl":null,"url":null,"abstract":"With the increasing popularity of the renewable generation sources these days, we are facing the great challenges on how to integrate them into a community distribution network smoothly. The variability of renewable generation makes it difficult to maintain the voltage stability. As a widely accepted solution that requires the least change on the substation controllers, the output of a renewable generator needs to be controlled so that no power is injected from a distribution network substation into a transmission network. In this paper, we design a control policy that regulates the power output from the renewable generators. We further leverage the price control to discourage non-collaborative behaviors so that this policy can not only guarantee the stability of the distribution network, but also ensure the fairness of generators in case of non-collaborations. Through simulations we demonstrate that this policy enables us to integrate renewable generations to achieve their benefits while limiting their disadvantages.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Price and output control in a community power network with renewable generations\",\"authors\":\"Jiazhen Zhou, R. Hu, Xuping Zhang, Y. Qian\",\"doi\":\"10.1109/SmartGridComm.2012.6486047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing popularity of the renewable generation sources these days, we are facing the great challenges on how to integrate them into a community distribution network smoothly. The variability of renewable generation makes it difficult to maintain the voltage stability. As a widely accepted solution that requires the least change on the substation controllers, the output of a renewable generator needs to be controlled so that no power is injected from a distribution network substation into a transmission network. In this paper, we design a control policy that regulates the power output from the renewable generators. We further leverage the price control to discourage non-collaborative behaviors so that this policy can not only guarantee the stability of the distribution network, but also ensure the fairness of generators in case of non-collaborations. Through simulations we demonstrate that this policy enables us to integrate renewable generations to achieve their benefits while limiting their disadvantages.\",\"PeriodicalId\":143915,\"journal\":{\"name\":\"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2012.6486047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2012.6486047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Price and output control in a community power network with renewable generations
With the increasing popularity of the renewable generation sources these days, we are facing the great challenges on how to integrate them into a community distribution network smoothly. The variability of renewable generation makes it difficult to maintain the voltage stability. As a widely accepted solution that requires the least change on the substation controllers, the output of a renewable generator needs to be controlled so that no power is injected from a distribution network substation into a transmission network. In this paper, we design a control policy that regulates the power output from the renewable generators. We further leverage the price control to discourage non-collaborative behaviors so that this policy can not only guarantee the stability of the distribution network, but also ensure the fairness of generators in case of non-collaborations. Through simulations we demonstrate that this policy enables us to integrate renewable generations to achieve their benefits while limiting their disadvantages.