International Journal of Number Theory最新文献

筛选
英文 中文
A conjecture of Hegyvári 黑格瓦里的猜想
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-16 DOI: 10.1142/s1793042124500477
Xing-Wang Jiang, Wu-Xia Ma
{"title":"A conjecture of Hegyvári","authors":"Xing-Wang Jiang, Wu-Xia Ma","doi":"10.1142/s1793042124500477","DOIUrl":"https://doi.org/10.1142/s1793042124500477","url":null,"abstract":"<p>For a given sequence <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span> of nonnegative integers, let <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>P</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span> be the set of all finite subsequence sums of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span>. <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span> is called complete if <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>P</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span> contains all sufficiently large integers. A real number <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span><span></span> is called as an infinite diadical fraction (briefly i.d.f.) if the digit 1 appears infinitely many times in the binary representation of <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span>. Hegyvári conjectured that <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span><span></span> is complete if <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> or <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span> is i.d.f. and <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo stretchy=\"false\">/</mo><mi>β</mi><mo>≠</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>l</mi></mrow></msup><mspace width=\"0.25em\"></mspace><mo stretchy=\"false\">(</mo><mi>l</mi><mo>∈</mo><mi>ℤ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, where <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>=</mo><mo stretchy=\"false\">{</mo><mo stretchy=\"false\">[</mo><mi>α</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mo stretchy=\"false\">[</mo><mi>β</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mo>…</mo><mo>,</mo><mo stretchy=\"false\">[</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mi>α</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mo stretchy=\"false\">[</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mi>β</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mo>…</mo><mo stretchy=\"false\">}</mo></math></span><span></span> is a sequence of integers. In this paper, we give a partial result of Hegyvári’s conjecture.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Values of certain Dirichlet series and higher derivative formulas of trigonometric functions 某些 Dirichlet 级数的值和三角函数的高导数公式
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-13 DOI: 10.1142/s1793042124500519
Dominic Lanphier, Allen Lin
{"title":"Values of certain Dirichlet series and higher derivative formulas of trigonometric functions","authors":"Dominic Lanphier, Allen Lin","doi":"10.1142/s1793042124500519","DOIUrl":"https://doi.org/10.1142/s1793042124500519","url":null,"abstract":"<p>We determine new values of certain Dirichlet series and related infinite series. These formulas extend results of several authors. To obtain these results we apply recent expansions of higher derivative formulas of trigonometric functions. We also investigate the transcendentality of values of these series and arithmetic relations of the values of certain related infinite series.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On bounded basis with prescribed representation functions 在有界的基础上,用规定的表示函数
3区 数学
International Journal of Number Theory Pub Date : 2023-11-02 DOI: 10.1142/s1793042124500179
Fang-Gang Xue
{"title":"On bounded basis with prescribed representation functions","authors":"Fang-Gang Xue","doi":"10.1142/s1793042124500179","DOIUrl":"https://doi.org/10.1142/s1793042124500179","url":null,"abstract":"Let [Formula: see text] be the set of integers and [Formula: see text] the set of positive integers. For a nonempty set [Formula: see text] of integers and any integers [Formula: see text], [Formula: see text] with [Formula: see text], define [Formula: see text] as the number of solutions of [Formula: see text], where [Formula: see text] and [Formula: see text] for [Formula: see text] A set [Formula: see text] of integers is defined as a basis of order [Formula: see text] for [Formula: see text] if [Formula: see text] for every integer [Formula: see text]. In 2004, Nešetřil and Serra considered the Erdős–Turán conjecture for a class of bounded bases. In this paper, we generalize the above result and obtain that: for any function [Formula: see text], there exists a bounded basis of order [Formula: see text] for [Formula: see text] such that [Formula: see text] for every integer [Formula: see text].","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135875133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinite families of solutions for A3 + B3 = C3 + D3 and A4 + B4 + C4 + D4 + E4 = F4 in the spirit of Ramanujan 以拉马努扬精神为基础的 A3 + B3 = C3 + D3 和 A4 + B4 + C4 + D4 + E4 = F4 的无穷解族
3区 数学
International Journal of Number Theory Pub Date : 2023-11-02 DOI: 10.1142/s1793042124500283
Archit Agarwal, Meghali Garg
{"title":"Infinite families of solutions for A3 + B3 = C3 + D3 and A4 + B4 + C4 + D4 + E4 = F4 in the spirit of Ramanujan","authors":"Archit Agarwal, Meghali Garg","doi":"10.1142/s1793042124500283","DOIUrl":"https://doi.org/10.1142/s1793042124500283","url":null,"abstract":"Ramanujan, in his lost notebook, gave an interesting identity, which generates infinite families of solutions to Euler’s Diophantine equation [Formula: see text]. In this paper, we produce a few infinite families of solutions to the aforementioned Diophantine equation as well as for the Diophantine equation [Formula: see text] in the spirit of Ramanujan.","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135875134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Lower Bound on the Proportion of Modular Elliptic Curves Over Galois CM Fields 伽罗瓦CM域上模椭圆曲线比例的下界
3区 数学
International Journal of Number Theory Pub Date : 2023-11-02 DOI: 10.1142/s1793042124500246
Zachary Feng
{"title":"A Lower Bound on the Proportion of Modular Elliptic Curves Over Galois CM Fields","authors":"Zachary Feng","doi":"10.1142/s1793042124500246","DOIUrl":"https://doi.org/10.1142/s1793042124500246","url":null,"abstract":"We calculate an explicit lower bound on the proportion of elliptic curves that are modular over any Galois CM field not containing [Formula: see text]. Applied to imaginary quadratic fields, this proportion is at least [Formula: see text]. Applied to cyclotomic fields [Formula: see text] with [Formula: see text], this proportion is at least [Formula: see text] with only finitely many exceptions of [Formula: see text], for any choice of [Formula: see text].","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135875328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Author index (Volume 19) 作者索引(第 19 卷)
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2023-11-01 DOI: 10.1142/s1793042123990014
{"title":"Author index (Volume 19)","authors":"","doi":"10.1142/s1793042123990014","DOIUrl":"https://doi.org/10.1142/s1793042123990014","url":null,"abstract":"","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139302083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing Shintani Domains 计算新谷域
3区 数学
International Journal of Number Theory Pub Date : 2023-10-13 DOI: 10.1142/s1793042124500209
Alex Capunay
{"title":"Computing Shintani Domains","authors":"Alex Capunay","doi":"10.1142/s1793042124500209","DOIUrl":"https://doi.org/10.1142/s1793042124500209","url":null,"abstract":"","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135918481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Congruence properties modulo powers of 2 for overpartitions and overpartition pairs 过划分和过划分对的模幂2的同余性质
3区 数学
International Journal of Number Theory Pub Date : 2023-10-13 DOI: 10.1142/s1793042124500180
Dazhao Tang
{"title":"Congruence properties modulo powers of 2 for overpartitions and overpartition pairs","authors":"Dazhao Tang","doi":"10.1142/s1793042124500180","DOIUrl":"https://doi.org/10.1142/s1793042124500180","url":null,"abstract":"","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135918640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Some Sums Involving the Integral Part Function 关于若干涉及积分部分函数的和
3区 数学
International Journal of Number Theory Pub Date : 2023-10-13 DOI: 10.1142/s179304212450043x
Kui Liu, Jie Wu, Zhishan Yang
{"title":"On Some Sums Involving the Integral Part Function","authors":"Kui Liu, Jie Wu, Zhishan Yang","doi":"10.1142/s179304212450043x","DOIUrl":"https://doi.org/10.1142/s179304212450043x","url":null,"abstract":"Denote by $tau$ k (n), $omega$(n) and $mu$ 2 (n) the number of representations of n as product of k natural numbers, the number of distinct prime factors of n and the characteristic function of the square-free integers, respectively. Let [t] be the integral part of real number t. For f = $omega$, 2 $omega$ , $mu$ 2 , $tau$ k , we prove that n x f x n = x d 1 f (d) d(d + 1) + O $epsilon$ (x $theta$ f +$epsilon$) for x $rightarrow$ $infty$, where $theta$ $omega$ = 53 110 , $theta$ 2 $omega$ = 9 19 , $theta$ $mu$2 = 2 5 , $theta$ $tau$ k = 5k--1 10k--1 and $epsilon$ > 0 is an arbitrarily small positive number. These improve the corresponding results of Bordell{`e}s.","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135805960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
A Dirichlet Series Related to the Error Term in the Prime Number Theorem 与素数定理中误差项有关的狄利克雷级数
3区 数学
International Journal of Number Theory Pub Date : 2023-10-13 DOI: 10.1142/s1793042124500362
Ertan Elma
{"title":"A Dirichlet Series Related to the Error Term in the Prime Number Theorem","authors":"Ertan Elma","doi":"10.1142/s1793042124500362","DOIUrl":"https://doi.org/10.1142/s1793042124500362","url":null,"abstract":"","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135918172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信